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1. Introduction

1.1. The last decade has been a time of tremendous activity in p-adic Hodge
Theory. We do not intend to give a complete account of these new developments
here, but let us at least mention the surveys [2] providing an overview of recent
topics in the theory of p-adic representations, the survey of p-adic cohomology [34],
the survey of p–adic Hodge theory for torsion coefficients [8], Tsuji’s survey of his
proof of the Cst–conjecture of Fontaine [51], and for an introduction to the main
ideas of p-adic Hodge theory the beautiful article [27]. We should also note that in
the last decade there has been an increasing interest in non–abelian p-adic Hodge
theory and its relationship to motives [20], [35], [41], [52].

Instead of attempting the impossible task of trying to cover all of these topics
in one article we will instead discuss one aspect of the theory: Faltings’ method of
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almost étale extensions. Faltings’ method is one of the most powerful tools in p-
adic Hodge theory and yields in particular a proof of the Cst–conjecture of Fontaine
which was first proven by Tsuji in [49] using syntomic cohomology. It is also to the
author’s knowledge the best technology currently available to deal with coefficients
and cohomology with compact support of open varieties. Unfortunately for various
reasons (not the least of which is the very technical nature of Faltings’ theory), the
approach to p-adic Hodge theory using “almost mathematics” does not seem to be
so widely studied.

1.2. Let us begin by reviewing the main result of p-adic Hodge theory in the
simplest situation of good reduction, and the various approaches to the theory in
this context.

Let p be a prime, and let V be a complete discrete valuation ring of mixed
characteristic (0, p) and perfect residue field k. Let K be the fraction field of V ,
and fix an algebraic closure K ↪→ K. Let W ⊂ V be the ring of Witt vectors of k,
and let K0 ⊂ K be the field of fractions of W . The ring W comes equipped with a
lifting of Frobenius σ : W → W which also induces an automorphism of K0 which
we denote by the same letter.

Let X/V be a smooth proper scheme. The theory of p-adic Hodge theory con-
cerns the comparison between the étale cohomology H∗(XK ,Qp) and the algebraic
de-Rham cohomology H∗

dR(XK) of the generic fiber.
To understand this comparison one must consider the additional structures that

these cohomology groups are endowed with. The étale cohomology H∗(XK ,Qp)
is a continuous GK := Gal(K/K)-representation, and the de Rham cohomology
H∗

dR(XK) comes equipped with the following data:

(i) A descending filtration F · (the Hodge filtration).
(ii) A graded K0-vector space M0 with a σ-semi-linear automorphism ϕ :

M0 →M0 (Frobenius) and an isomorphism K ⊗K0 M0 ' H∗
dR(XK). The

K0-vector space M0 is given by the crystalline cohomology of the closed
fiber of X.

This package is formalized by defining a filtered ϕ-module to be a triple (D,ϕ,FilD)
consisting of a finite dimensional K0-vector space D with a σ-semi-linear automor-
phism ϕ : D → D and a descending separated and exhaustive filtration FilD on
DK := D ⊗K0 K.

To pass between the étale and de Rham cohomologies (with their additional
structure) one uses Fontaine’s ring Bcris(V ) (see section 11). This is a K0-algebra
which comes equipped with a Frobenius automorphism ϕ and an action of GK . The
ring Bcris(V ) is a subring of a larger K-algebra BdR(V ) which is a discrete valuation
field. In particular, the valuation on BdR(V ) defines a filtration on BdR(V ). If E is
a filtered K-vector space then we view E ⊗K BdR(V ) as filtered using the product
filtration.

For a continuous GK-representation W define

D(W ) := (W ⊗Qp Bcris(V ))GK .

This is known to be a finite-dimensional Qp-vector space, and it has a natural struc-
ture of a filtered ϕ-module. Namely, it inherits a semi-linear Frobenius automor-
phism ϕD(W ) from the automorphism on Bcris(V ), and there is a filtration FilD(W )

on D(W )K := D(W )⊗K0 K induced by the filtration on D(W )K ⊗K BdR(V ).
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The representation W is called crystalline if the natural map (which is always
injective)

(1.2.1) D(W )⊗K0 Bcris(V )→W ⊗Qp
Bcris(V )

is an isomorphism. In this case we say that (D(W ), ϕD(W ),FilD(W )) is associated
to W . If W is crystalline one can recover W from (D(W ), ϕD(W ),FilD(W )) as

{x ∈ D(W )⊗K0 Bcris(V )|ϕ(x) = x, x⊗ 1 ∈ Fil0(D(W )K ⊗K BdR(V ))}.
A filtered ϕ-module (D,ϕ,FilD) is called admissible if it is isomorphic to

(D(W ), ϕD(W ),FilD(W )) for some crystalline representation W .
The main result of p-adic Hodge theory in the present situation is the following:

Theorem 1.3 ([14, 18, 49]). The GK-representation H∗(XK ,Qp) is crys-
talline and is associated to H∗

dR(XK) with the additional structure (i) and (ii)
above.

Remark 1.4. In the present good reduction setting, theorem 1.3 was first
proven by Fontaine and Messing in [18] under the assumption that p > dim(XK)
and K0 = K. Subsequently Kato and Messing were able to extend this result to
the case when dim(XK) < (p− 1)/2 [31, 32]. The general result was then proven
by Tsuji and Faltings who also proved a comparison result without the assumption
of good reduction (where the statement is more complicated).

Remark 1.5. One application of 1.3, from which the terminology ‘p-adic Hodge
theory’ derives, is the following. As mentioned above the ring BdR(V ) is a discrete
valuation field, and its residue field is Cp (the p-adic completion of K). Using
this one shows that there is an isomorphism of graded rings with GK-action (the
subscript HT stands for Hodge-Tate)

BHT(V ) := gr∗BdR(V ) ' ⊕i∈ZCp(i),

where multiplication on the right is given by the natural isomorphisms Cp(i) ⊗
Cp(j)→ Cp(i+ j). Now if W is a crystalline representation, then the isomorphism
1.2.1 induces upon tensoring with BdR(V ) and passing to the associated graded
modules an isomorphism

gr∗(D(W )K)⊗ BHT(V ) 'W ⊗Qp
BHT.

In the case when W = Hm(XK ,Qp) the degree 0 part of this isomorphism yields a
GK-equivariant isomorphism

Hm(XK ,Qp)⊗ Cp ' ⊕i+j=mH
i(XK ,Ω

j
XK

)⊗K Cp(−j)
called the Hodge-Tate decomposition of Hm(XK ,Qp)⊗ Cp.

1.6. Let H∗
cris(X/K0) denote the crystalline cohomology of the closed fiber of

X, so we have the Berthelot-Ogus isomorphism

H∗
cris(X/K0)⊗K0 K ' H∗

dR(X/K).

The main difficulty in proving 1.3 is to construct maps

(1.6.1) H∗(XK ,Qp)⊗Qp
Bcris(V )

? //___
H∗

cris(X/K0)⊗K0 Bcris(V ).
?

oo_ _ _

In fact it suffices to construct a map in one direction which respects the various
structures and in addition is compatible with cycle classes. For then it is essentially
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formal that it is an isomorphism (as we explain in section 14). Unfortunately there
is no known construction of a map relating the two cohomology theories directly,
and all known proofs of 1.3 use an intermediate theory to relate the two.

There are three main approaches to proving 1.3. Let V ⊂ K be the integral
closure of V , and let XV be the base change of X.

(i) (Syntomic cohomology). This approach has been developed by Fontaine,
Messing, Hyodo, Kato, and Tsuji among others (see [18, 26, 30, 32, 49, 51]).

Here one defines certain syntomic cohomology groups H∗
syn(XV ,S (r)Qp) (r ≥

0). There are maps

(1.6.2) αr : H∗
syn(XV ,S (r)Qp)→ H∗(XK ,Qp(r))

and

(1.6.3) βr : H∗
syn(XV ,S (r)Qp)→ H∗

cris(X/K0)⊗K0 Bcris(V ).

The key result in this approach is to show that for r >> 0 the map αr is an iso-
morphism. By inverting the map αr and applying suitable Tate twists one obtains
the desired morphism 1.6.1.

The proof that for r >> 0 the map αr is an isomorphism requires a detailed
analysis of p-adic vanishing cycles. Let Y denote the base change of XV to the
residue field k̄ of V so we have a commutative diagram

XK

j̄ // XV Y .
īoo

By the proper base change theorem we have

H∗(XK ,Z/(p
n)(r)) ' H∗(Y , ī∗Rj̄∗Z/(pn)(r)).

The syntomic theory provides a crystalline interpretation of the p-adic vanishing
cycles ī∗Rj̄∗Z/(pn)(r).

Suppose T is a flat and local complete intersection scheme over W (such a
scheme T is called syntomic over W ), and assume that T is quasi-projective. Then
we can find an immersion i : T ↪→ Z, where Z is a smooth W -scheme such that
there exists a morphism FZ : Z → Z lifting the Frobenius morphism on Z ⊗W k,
and such that the diagram

Z
FZ //

��

Z

��
Spec(W ) σ // Spec(W )

commutes (for example Z can be chosen to be a suitable projective space). Let

in : Tn ↪→ Zn

be the morphism over Wn := W/pn defined by reduction modulo pn. Let Dn be the
divided power envelope of Tn in Zn and let J [r]

n (r ≥ 0) be the r-th divided power
ideal of Dn (which we view as a sheaf on T1). For r < 0 we define J [r]

n := ODn . We
then get a complex on T1

J[r]
n : J [r]

n → J [r−1]
n ⊗ Ω1

Zn
→ J [r−2]

n ⊗ Ω2
Zn
→ · · · .
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In case r = 0 this is simply the complex computing the crystalline cohomology of
T1/Wn, and in general a crystalline interpretation is given in [4, 7.2]. The map FZ

induces a map
f : J[r]

n → J[0]
n .

Define S̃n(r)T to be the mapping fiber of the map of complexes

J[r]
n

pr−f // J[0]
n .

This complex S̃n(r)T is in fact independent of the choice of i : T ↪→ Z and can be
defined globally using hypercovers.

Returning to our smooth proper scheme X/V , note that for every finite exten-
sion V → V ′ the base change XV ′ is syntomic over W and therefore one obtains a
complex S̃n(r)XV ′ on the closed fiber of XV ′ , and hence also by pullback a complex
on Y . By passing to a suitable limit one then obtains a complex S̃n(r)XV

on Y .
Let Z/pnZ(r)′ denote ( 1

paa!Zp(r))⊗Z/pnZ, where r = (p− 1)a+ b (a ∈ Z and
0 ≤ b ≤ p− 2). The key result of Tsuji is then the following:

Theorem 1.7 ([49, §3]). There is a canonical GK-equivariant morphism

(1.7.1) S̃n(r)XV
→ ī∗Rj̄∗Z/pnZ(r)′.

If 0 ≤ q ≤ r then there exists an integer N depending only on p, q, and r such that
the kernel and cokernel of the map

H q(S̃n(r)XV
)→ ī∗Rq j̄∗Z/pnZ(r)′

is annihilated by pN .

We define

H∗
syn(XV ,S (r)Qp

) := Qp ⊗ lim←−H
∗(Y , S̃n(r)XV

).

The map αr in 1.6.2 is obtained from the map 1.7.1 by passing to the limit in n
and tensoring with Qp. It follows from the second statement in 1.7 that for r >> 0
the map αr is an isomorphism.

On the other hand, by construction there is a natural map

H∗
syn(XV , S̃n(r)XV

)→ H∗(Y , J[r]
n ),

where on the right we write J[r]
n for the limit of the complexes obtained from the

XV ′ (V ⊂ V ′ a finite extension).
It is fairly easy (at least in comparison to the proof of 1.7) to show that for

r ≥ m there is a canonical isomorphism

Bcris(V )+ ⊗W Hm
cris(X/W ) ' Qp ⊗ lim←−

n

H∗(Y , J[0]
n ),

where Bcris(V )+ is defined in 11.1.6 (the ring Bcris(V ) is a localization of Bcris(V )+).
The map βr in 1.6.3 is defined to be the map induced by the natural inclusion
J[r]

n ⊂ J[0]
n .

(ii) (K-theory). This approach developed by Niziol [36, 37] offers perhaps the
most direct relation among the two cohomology groups. The key point is that there
are regulator maps

cetij : gri
γKj(XK ,Z/p

n)→ H2i−j(XK ,Z/p
n(i)),
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where Kj(XK ,Z/pn) denotes algebraic K-theory with coefficients, which is filtered
by the γ-filtration. Using Thomason’s comparison theorem between algebraic and
étale K-theory [48], Niziol then describes the kernel and cokernel of the regulator
map cetij .

There is also a syntomic regulator map

csyn
ij : gri

γKj(XK ,Z/p
n)→ H2i−j(Y , S̃n(i)).

Upon passing to the limit in n, applying a suitable Tate twist, and using the map
1.6.3 we obtain a diagram

Q⊗ lim←−n
gri

γKj(XK ,Z/pn)(−i)

ccris

��

cet

++WWWWWWWWWWWWWWWWWWWW

H2i−j
cris (X/K0)⊗K0 Bcris(V ) H2i−j(XK ,Qp)⊗Qp Bcris(V ).

By analyzing the kernel and cokernel of cet Niziol then shows that this induces the
desired homomorphism 1.6.1.

(iii) (Almost mathematics). This approach, which is the subject of the rest of
the paper, was developed by Faltings in a series of papers [13, 14, 15]. To indicate
the flavor of Faltings’ approach, let us give a brief sketch of his argument in the
simplest case of constant coefficients and a proper scheme.

Faltings’ approach is in some sense also based on a calculation of a kind of
p-adic vanishing cycles. The key result is the almost purity theorem (see 2.17)
which enables one to compute Galois cohomology in the local situation. Let R be
a smooth V -algebra and assume given an étale morphism

(1.7.2) Spec(R)→ Spec(V [T±1 , . . . , T
±
d ])

for some integer d. Assume that Spec(R/pR) 6= ∅ and that R ⊗V V is an integral
domain. Let R∞ be the algebra obtained by adjoining all the ps-roots of Ti in
R ⊗V V for all i and s. Let R ⊂ K denote the normalization of R in the maximal
field extension Frac(R) ⊂ L which is unramified over R ⊗V K. We then have an
inclusion R∞ ⊂ R. Let ∆ (resp. ∆∞) denote the Galois group of R (resp. R∞)
over RV . The main implication (see 3.10) of Faltings’ almost purity theorem is that
the natural map of Galois cohomology groups

H∗(∆∞, R∞/pR∞)→ H∗(∆, R/pR)

is an almost isomorphism, which means that the kernel and cokernel is annihilated
by any element in the maximal ideal of V . On the other hand, the Galois group
∆∞ is easy to describe and in fact is isomorphic to Zp(1)d. This implies that the
cohomology groups H∗(∆∞, R∞/pR∞) are computed by a certain explicit Koszul
complex. In particular, there is a natural map

(1.7.3) RV ⊗V

•∧
(V /pV )d(−1)→ H∗(∆∞, R∞/pR∞).

which in fact is a direct summand.
This (almost) description of H∗(∆, R/pR) of course depends on the choice of

chart 1.7.2. It can be made canonical by using the basis dTi/Ti for Ω1
R/V to identify

the map 1.7.3 with an almost morphism
•∧
(Ω1

R/V ⊗R RV /pRV (−1))→ H∗(∆, R/pR)
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which is independent of choices.
These local calculations enable one to define a new cohomology theory which

plays a similar role to the syntomic cohomology. First Faltings defines a ringed
topos (XK ,OXK

) which maps to Xet and such that locally on X when one has
a map 1.7.2 the cohomology of the structure sheaf modulo p in XK is given by
the group cohomology described above. Using these local descriptions one sees
that the cohomology groups H∗(XK ,OXK

/(p)) are almost finitely generated over
V /pV , satisfy Poincaré duality, and there is a theory of Chern classes. There is
also a natural map

(1.7.4) H∗(XK ,Z/(p))⊗ V → H∗(XK ,OXK
/(p))

which one then shows is an almost isomorphism.
To go from this isomorphism to a comparison isomorphism between étale and

de Rham cohomology then requires a number of steps. Principal among them are
the following:

(1) Recall (see section 11) that the ring Bcris(V ) is obtained by localization
from a W -algebra Acris(V ) with GK-action and Frobenius automorphism.
The ring Acris(V ) contains certain ideals mα (where α runs over positive
elements of Z[1/p]), and one can consider almost mathematics over the
ring Acris(V ) (and hence also over Bcris(V )). A map of Acris(V )-modules
M → N is an almost isomorphism if the kernel and cokernel are annihi-
lated by every mα for all α.

To pass from a mod p theory to a p-adic theory, one first replaces the
sheaf OXK

/(p) in the above with a suitable sheaf Acris defined using the
same construction as the construction of Acris(V ), and then shows that
there is an almost isomorphism of Acris(V )-modules

H∗(XK ,Qp)⊗Qp (Acris(V )Qp)→ H∗(XK ,Acris)⊗Q.

In fact this is not quite correct, and one has to work instead with the
formal completion X̂ of X along the closed fiber and a variant topos X̂K

instead of XK .
(2) Construct a map

H∗
cris(X/K0)⊗K0 Bcris(V )→ H∗(XK ,Acris)⊗Acris(V ) Bcris(V )

thereby obtaining an almost morphism of Bcris(V )-modules

H∗
cris(X/K0)⊗K0 Bcris(V )→ H∗(XK ,Qp)⊗Qp

Bcris(V )

which by the usual argument using Chern classes will be an almost iso-
morphism.

(3) Lift this almost isomorphism to an actual isomorphism over Bcris(V ).

1.8. Our aim in this paper is to give a detailed account of Faltings’ method
in the case of a variety with good reduction (and also an open variant) using the
basics of almost mathematics and the almost Purity theorem as a “black box”
(the interested reader should consult the very thorough treatment of the necessary
almost mathematics in [21]). We pay particular attention to the Qp–theory which
is not discussed in detail in the literature and consider non-constant coefficients
(the ability to deal with nonconstant coefficients is one of the big advantages of
Faltings’ approach).
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1.9. The paper is organized as follows.
In section 2 we give the basic definitions of almost mathematics and state the

purity theorem in the form needed in this paper. The main result is 2.17.
As mentioned above, the importance of the purity theorem is that it enables

one to (almost) compute certain Galois cohomology groups. We perform these
computations in sections 3 and 4. The main results are 3.11 and 4.7. We also
consider in this section cohomology with compact support using the theory of loga-
rithmic structure. These computations are the key local results needed for Faltings’
approach to p-adic Hodge theory.

We then begin the necessary foundational work for our study of the topos X o
K

which will serve as the intermediary between étale and crystalline cohomology.
It is well-known (see [1, XI §3]) that if Y/K is a smooth K-scheme, then for

every point y ∈ Y (K) there exists an open neighborhood U of y such that U is a
K(π, 1). This means that for any locally constant sheaf of torsion abelian groups
the natural map (see section 5 for a description of this map)

(1.9.1) H∗(π1(U, y), F )→ H∗(Uet, F )

is an isomorphism, whereH∗(π1(U, y), F ) denotes the continuous group cohomology
of F viewed as a representation of π1(U, y). In Faltings’ approach a generalization
of this result is needed. Namely, if X/V is a smooth proper scheme then we need
that for any geometric point x̄ → X of the closed fiber, there exists an étale
neighborhood U of x̄ such that the geometric generic fiber UK of U is a K(π, 1).
We prove this result in section 5 as well as variants for open varieties.

We then introduce the topos XK and its open variant X o
K

in section 6. In the
proper case there are morphisms of topoi

νX : XK → Xet

and
uX : XK,et →XK .

Any locally constant sheaf L of Z/(pr)-modules on XK defines a sheaf L on XK

such that ν∗XL = L. Furthermore we show in section 6 that the natural map

(1.9.2) H∗(XK ,L )→ H∗(XK , L)

is an isomorphism. On the other hand, the topos XK has a structure sheaf OXK

and there is a natural map

(1.9.3) H∗(XK ,L )→ H∗(XK ,L ⊗ OXK
).

Perhaps the main result in the whole theory is 6.16 which implies that this map is
an almost isomorphism (and in above situation provides the isomorphism 1.7.4).

The proof of 6.16 occupies the following two sections 7 and 8. The introduction
of cohomology with compact support poses some additional technical problems. In
particular, we spend some time explaining how to compute compactly supported
cohomology using group cohomology in section 7. Then in section 8 we prove
6.16 by developing the necessary theory of Chern classes and verifying that the
comparison maps between the various cohomology theories are compatible with
Chern classes. For technical reasons we consider in this section a more general
theory of cohomology with partial compact support along a boundary.

We then turn to lifting this mod p result to a theory with Qp-coefficients. In
section 9 we introduce a variant X̂ o

K
of the topos X o

K
which is necessary to deal
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with Qp-coefficients. The main point is to replace X by its p-adic completion.
Fortunately the almost purity theorem also holds in this context and as we prove
in 9.4 the cohomologies of X̂ o

K
and X o

K
are almost isomorphic.

Then in sections 10 through 15 we explain Faltings’ proof of the Ccrys–conjecture
of Fontaine relating p-adic étale cohomology and crystalline cohomology.

Locally the comparison map is obtained by on the one hand computing crys-
talline cohomology using an embedding into a smooth scheme, and on the other
hand computing étale cohomology using group cohomology. Of course to define
the map globally requires simplicial techniques. In section 10 we explain how to
compute étale cohomology using group cohomology using simplicial techniques (the
only real issue is how to deal with base points for simplicial schemes).

In section 11 we review the necessary facts about Fontaine’s rings Acris and
Bcris. We also consider a certain localization B̃cris of Bcris which arises when one
considers almost mathematics over Bcris.

In section 12 we extend our earlier computations of cohomology in the topos
X o

K
to cohomology with coefficients in sheafified versions of Fontaine’s rings Acris

and Bcris. The main point is to show that the notion of almost isomorphism behaves
well upon taking various inverse limits.

Then in 13 we define the transformation from crystalline to étale cohomology
over B̃cris and state the comparison theorem over B̃cris (see 13.21), and then in
section 14 we complete the proof of the comparison theorem over B̃cris. Again the
key point is to show that the comparison map is compatible with Chern classes.

Fnally we explain in section 15 how to pass from the comparison theorem
over B̃cris to the comparison theorem over Bcris. This follows from some formal
properties of these rings and Berger’s theorem that any de Rham representation is
potentially semistable [3, 0.7]. The main result is 15.5.

Remark 1.10. The results of Faltings discussed in this paper suffice for the
applications we studied in [41].

Remark 1.11. Faltings has proven a version of the purity theorem in the
substantially more general case of a variety with a certain kind of toroidal reduction
[13, section 2b] (in particular it applies to varieties with semistable reduction).
This enables Faltings to prove the Cst-conjecture of Fontaine. While the main
ideas in this more general context remain the same, there are several additional
technical complications and for the sake of exposition we restrict ourselves to the
good reduction case in this paper.

Also as discussed in [13, p. 258] there are some additional subtleties in de-
veloping the Qp-theory for coefficients in the semistable reduction case. The main
problem lies with the construction of the so-called Hyodo-Kato isomorphism which
requires certain finiteness properties of crystalline cohomology over the divided
power envelope of the closed immersion Spec(V/pV ) ↪→ Spec(W [t]) obtained by
sending t to the class of a uniformizer π ∈ V . As this divided power envelope is
not noetherian such finiteness of cohomology does not follow from standard tech-
niques. In the case of constant coefficients the necessary finiteness properties follow
from a comparison with the de Rham-Witt complex, but for general coefficients
this method does not apply.

1.12. Prerequisites. In order to study open varieties, we work in this paper
with logarithmic geometry in the sense of Fontaine, Illusie, and Kato [29]. This is
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not necessary for the proper case, so the reader not familiar with this theory can
still read the paper restricting themselves to the case of empty boundary divisor.
For the discussion of the comparison theorem the reader is assumed familiar with
crystalline cohomology as well as the convergent topos [39], [45].

1.13. Acknowledgements. It is a pleasure to thank A. Abbes for encour-
agement to write up these notes on Faltings’ papers, and for pointing out several
important corrections in an earlier version. I initially learned about the approach
to p-adic Hodge theory using almost mathematics during a visit to U. Paris-Sud
during summer of 2003. I would like to thank L. Illusie for the invitation and help-
ful conversations, and O. Gabber and T. Tsuji for very interesting lectures. The
paper also benefitted from very helpful comments from the referees.

2. Almost mathematics and the purity theorem

2.1. Fix a ring V together with a sequence of principal ideals mα ⊂ V indexed
by the positive elements Λ+ of some subgroup Λ ⊂ Q which is dense in R and
contains 1. Let π denote a generator of m1, and for α ∈ Λ+ let πα denote a
generator of mα. We assume that πα is not a zero–divisor in V and that for every
α, β ∈ Λ+ there exists a unit u ∈ V ∗ such that πα · πβ = uπα+β . We let m denote
the ideal ∪α>0mα.

Observe that since each πα is a nonzero divisor in V the ideal mα is a flat
V -module. This implies that m is also a flat V -module, as it is the filtering direct
limit of the flat V -modules mα. This implies in particular that the multiplication
map m⊗V m→ m is an isomorphism.

Example 2.2. The most important example for this paper is the following.
Let V be a complete discrete valuation ring of mixed characteristic (0, p), field of
fractions K, and perfect residue field k. Let K be an algebraic closure of K and
let V be the integral closure of V in K. We then take π to be a uniformizer of V ,
Λ = Q, and mα the ideal of elements of valuation ≥ α.

2.3. Let V −Mod denote the category of V –modules, and let Σ ⊂ V −Mod
denote the full subcategory of modules annihilated by m. The category Σ is a Serre
subcategory in the sense of [23, Chapitre III, §1], and therefore one can form the
quotient category of V −Mod by the category Σ. We denote this quotient category
by V

a −Mod. By [23, Chapitre III, Proposition 1] the category V
a −Mod is an

abelian category. The objects of V
a −Mod are called almost V –modules and the

objects of Σ are called almost zero. It follows immediately from the definition that
the tensor structure on V −Mod induces a tensor structure on V

a −Mod. There
is a natural localization functor

(2.3.1) V −Mod→ V
a −Mod

which is compatible with the tensor structure.
Morphisms in V

a−Mod have the following simple description. IfM ∈ V −Mod,
then the category of almost isomorphisms φ : M ′ → M has an initial object given
by the morphism m ⊗ M → M . From this and the definition of the localized
category V

a −Mod given in [23, Chapitre III, §1] we have

(2.3.2) HomV
a−Mod(M,N) = HomV−Mod(m⊗M,N)

for any M,N ∈ V −Mod.
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Definition 2.4. Let R be a V –algebra and let M be an R–module.
(i) M is almost projective if Exti

R(M,N) ∈ Σ for all R–modules N and i > 0.
(ii) M is almost flat if TorR

i (M,N) ∈ Σ for all R–modules N and i > 0.
(iii) M is almost faithfully flat if M is almost flat and for any two R–modules N
and N ′ the map

(2.4.1) HomR(N,N ′)→ HomR(N ⊗M,N ′ ⊗M)

has almost zero kernel.
(iv) M is almost finitely generated (resp. almost finitely presented) if for every
α ∈ Λ+ there exists a finitely generated (resp. finitely presented) R–module Nα

and maps ψα : Nα → M and φα : M → Nα such that ψα ◦ φα = πα · id and
φα ◦ ψα = πα · id.

Lemma 2.5. If f : A → B is a morphism of V –algebras whose underlying
morphism of V –modules is almost faithfully flat, then for any A–module M the
natural map M →M ⊗A B is almost injective.

Proof. Let K be the kernel of M → M ⊗A B. We need to show that the
inclusion K ↪→ M is the zero map. For this it suffices to show that K ⊗A B →
M ⊗A B is the zero map. This follows from noting that we have a diagram

(2.5.1) K ⊗A B
a−−−−→ M ⊗A B

b−−−−→ M ⊗A B ⊗A B
c−−−−→ M ⊗A B,

where c is the map obtained from multiplication B ⊗A B → B, b ◦ a is the zero
map, and c ◦ b is the identity. �

2.6. Let A be a V –algebra, let P be an A–module, and let ωP/A denote the
canonical morphism

(2.6.1) P ⊗A Hom(P,A)→ Hom(P, P )

By [21, 2.4.29 (1b)], if P is almost finitely generated and almost projective then
the map ωP/A is an almost isomorphism. In particular, if

(2.6.2) evP/A : P ⊗A Hom(P,A)→ A

is the evaluation morphism then we obtain an almost trace map in V
a −Mod

(2.6.3) TrP/A : Hom(P, P )→ A

by sending ϕ : P → P to evP/A(ω−1
P/A(ϕ)).

Definition 2.7. A morphism A→ B of V –algebras is an almost étale covering
if the following two conditions hold:
(i) B is almost finitely generated, almost faithfully flat, and almost projective as
an A–module,
(ii) B is almost finitely generated and almost projective as a B ⊗A B–module.

2.8. Let A → B be an almost étale covering. For every b ∈ B multiplication
by b induces a morphism of A–modules µb : B → B. Let

(2.8.1) trB/A : B → A

be the morphism in V
a −Mod sending b to TrB/A(µb).
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Lemma 2.9. Let A → B be an almost étale covering. Then the trace map
trB/A : B → A induces an epimorphism in V

a−Mod. In particular, for any a ∈ A
and α > 0 the element παa is in the image of the trace map m ⊗ B → A (this is
the morphism in V −Mod obtained from the trace map and 2.3.2).

Proof. Let Q denote the cokernel of the trace map B → A. Since A → B is
almost faithfully flat, the vertical arrows in the following diagram

(2.9.1)

B
trB/A−−−−→ A −−−−→ Q −−−−→ 0

pr∗1

y y y
B ⊗B

trB⊗B/B−−−−−−→ B −−−−→ Q⊗A B −−−−→ 0

induce monomorphisms in V
a−Mod. It follows that to show that Q is almost zero

it suffices to show that the trace map B⊗B → B is almost surjective. This is seen
by observing that the composite morphism

B
trB/B⊗B// B ⊗B

trB⊗B/B// B

is the identity in V
a −Mod. �

Definition 2.10. Let A→ B be an almost étale covering, and let G be a finite
group of automorphisms of B over A. We say that B/A is Galois with group G if
the natural map

(2.10.1) B ⊗B →
∏
g∈G

B, b⊗ c 7→ (. . . , b · g(c), . . . )

is an almost isomorphism.

2.11. If A → B is an almost étale Galois covering with group G, then trB/A :
B → A in V

a−Mod can be described as follows. Momentarily let T : B → B denote
the morphism b 7→

∑
g∈G g(b). The map T is a morphism of A–modules. We claim

first of all that the induced morphism T a : B → B in V
a −Mod factors through

A (since A→ B is almost faithfully flat the map A→ B induces a monomorphism
in V

a −Mod). Indeed let Q denote the cokernel in the category of A–modules of
A→ B so that there is a commutative diagram with exact rows

(2.11.1)

A −−−−→ B
κ−−−−→ Q −−−−→ 0y y yc .

B −−−−→ B ⊗A B −−−−→ Q⊗A B −−−−→ 0.
Since A → B is almost injective, it suffices to show that c ◦ κ ◦ T is almost zero
and hence it suffices to consider the morphism B → B ⊗A B. Since B/A is almost
Galois we can replace B ⊗ B by

∏
g∈GB. This reduces the problem to the case

when B =
∏

g∈GA in which case the statement is clear.

Lemma 2.12. The two morphisms T a, trB/A : B → A in V
a −Mod are equal.

Proof. We think of these morphisms as actual morphisms m⊗B → A. Then
using the fact that A→ B is almost faithfully flat as above, one reduces to the case
when B =

∏
g∈GA in which case the result is immediate. �
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2.13. In addition there is a canonical morphism e : V → B ⊗ B in V
a −Mod

defined as follows. Namely, since B is almost projective viewed as a B⊗B-module
via the diagonal, we obtain a morphism in V

a −Mod

(2.13.1) EndB⊗B(B)
ω−1

B/B⊗B−−−−−→ B ⊗B⊗B Hom(B,B ⊗B)
evB/B⊗B−−−−−−→ B ⊗B.

We define e to be the morphism obtained by composing this map with the natural
map V → EndB⊗B(B). In what follows, we will usually view e as an element of
Hom(m, B ⊗ B) using 2.3.2. We often write παe for the value of e : m → B ⊗ B
on πα. Note that the composite of e with the multiplication map B ⊗ B → B is
simply the structural morphism V → B.

Example 2.14. Suppose A → B is actually an étale morphism (in the usual
sense). Then the diagonal Spec(B)→ Spec(B⊗B) is an open and closed immersion,
and hence defined by an idempotent e ∈ B ⊗B. An elementary verification shows
that the above defined morphism V → B ⊗B is equal to the map sending 1 to e.

Example 2.15. Let V be as in 2.2, and let A → B be a morphism of V –
algebras. Assume that A and B have no p–torsion. Then (2.7 (i)) implies that
A[1/p] → B[1/p] is finite étale. Then for any α > 0 the element παe ∈ B ⊗ B is
equal in B ⊗A B[1/p] to πα times the idempotent defining the diagonal.

2.16. We can now state the version of the almost purity theorem needed for
the good reduction case (see [13, §2b] for the most general statement). Let V be a
complete discrete valuation ring of mixed characteristic (0, p), let K be the field of
fractions of V , and assume that the residue field k of V is perfect. Let d ≥ 0 be an
integer, and consider a flat, formally étale morphism of rings

(2.16.1) V [T1, . . . , Td]→ R

with R noetherian, and Spec(R/pR) 6= ∅. Assume further that

RV := R⊗V V

is an integral domain. Let V [T 1/p∞

1 , . . . , T
1/p∞

d ] denote the V [T1, . . . , Td]–algebra
obtained by first extending scalars to the normalization V of V in K, and then
adjoining pn–th roots T 1/pn

i of Ti for all i and n. Denote by R∞ the base change

(2.16.2) R∞ := R⊗V [T1,...,Td] V [T 1/p∞

1 , . . . , T
1/p∞

d ].

Let Ro
∞ denote the localization

(2.16.3) Ro
∞ := R∞ ⊗V [T1,...,Td] V [T±1 , . . . , T

±
d ],

and let Ro
∞,K

denote Ro
∞ ⊗V K ' Ro

∞ ⊗V K.

Theorem 2.17 (Almost Purity). Let Ro
∞,K

→ So
K

denote a finite étale mor-
phism, and let S∞ denote the normalization of R∞ in So

K
. Then the morphism

R∞ → S∞ is an almost étale covering. If Ro
∞,K

→ So
K

is Galois then R∞ → S∞
is also an almost étale Galois covering.

Remark 2.18. Throughout the remainder of the paper we will repeatedly re-
turn to the setup of 2.16. In what follows, if T → Spec(R) is a morphism of schemes,
then we write T o for the fiber product

T o := T ×Spec(V [T1,...,Td]) Spec(V [T±1 , . . . , T
±
d ]).

If T is affine, say T = Spec(A), we also write Ao for the coordinate ring of T o.
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2.19. In order to deal systematically with cohomology, it will also be useful to
have an almost version of the derived category. Let (T,A) be a ringed topos with
A a sheaf of V –algebras. As in the punctual case discussed above, define an object
M ∈ A −Mod to be almost zero if M is annihilated by πα for all α ∈ Λ+. Let
Aa −Mod denote the localization of A −Mod by the full subcategory of almost
zero modules.

Let D(A) denote the derived category of A–modules in T , and let Σ denote
the multiplicative set of morphisms in D(A) which induce almost isomorphisms
on cohomology sheaves. By [53, 10.3.7] one can then form the localized category
Σ−1D(A) which we denote by D̃(A). The category D̃(A) is naturally a triangulated
category and the localization functor D(A) → D̃(A) is a triangulated functor.
Furthermore, the t–structure on D(A) induces a t–structure on D̃(A) whose heart
is the categoryAa−Mod. For any ∗ ∈ {+,−, b, [a, b]} we also have the corresponding
subcategories D̃∗(A) ⊂ D̃(A).

Let f : (T ′, A′) → (T,A) be a morphism of ringed topoi with A′ also a V –
algebra. If f : M → N is a morphism in D(A′) inducing almost isomorphisms
on all cohomology sheaves, then the morphism Rf∗ : Rf∗M → Rf∗N also induces
almost isomorphisms on all cohomology sheaves. It follows that the functor Rf∗
descends to a functor, which we denote by the same symbols, Rf∗ : D̃(A′)→ D̃(A).

Remark 2.20. As in 2.3.2, for any objects M,N ∈ A−Mod there is a canonical
isomorphism

(2.20.1) HomAa−Mod(M,N) ' HomA−Mod(m⊗M,N).

This implies in particular that morphisms in Aa −Mod can be constructed locally
in T by gluing.

We conclude this section with the following three results about projective sys-
tems which will be used in what follows.

Lemma 2.21. Let ρ· : {Fn} → {Gn} be a morphism of projective systems of
V –modules such that for every n the map ρn : Fn → Gn is an almost isomorphism.
Then ρ : lim←−Fn → lim←−Gn is an almost isomorphism.

Proof. Say f = {fn} ∈ lim←−Fn maps to zero under ρ, and let ε ∈ Λ+ be an
element. Then for every n the element fn ∈ Fn is annihilated by πε whence f is
also annihilated by πε. Therefore ρ is almost injective.

For almost surjectivity, consider an element g = {gn} ∈ lim←−Gn. Choose any
element ε ∈ Λ+ and write ε = ε0 + ε1 with ε0, ε1 also in Λ+. Choose for each n
an element fn ∈ Fn such that ρn(fn) = πε0gn. If f̄n+1 ∈ Fn denotes the image of
fn+1, then the element f̄n+1− fn is in the kernel of ρn and is therefore annihilated
by πε1 . It follows that the sequence {πε1fn} defines an element of lim←−Fn mapping
to πεg. �

Lemma 2.22. Let {C•n} be a projective systems of bounded below complexes of
V –modules such that for every n and j the map Cj

n+1 → Cj
n is almost surjective.

Then the cone of the natural map

(2.22.1) lim←−C
•
n → R lim←−C

•
n

is almost zero.
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Proof. The spectral sequence associated to the “stupid filtration” on the com-
plex of projective systems {C•n} gives a spectral sequence [10, 1.4.5]

(2.22.2) Epq
1 = Rq lim←−C

p
· =⇒ Rp+q lim←−C

•
· .

From this it follows that it suffices to show that Ri lim←−C
p
· is almost zero for all p

and all i > 0. This reduces the proof to the case when {C•n} is just a projective
system of V –modules with almost surjective transition maps. For every n, let Dn

denote the cokernel of the inclusion mCn ⊂ Cn. Then each Dn is almost zero so
for every i the map

(2.22.3) Ri lim←−{mC·} → Ri lim←−{C·}

is an almost isomorphism. The projective system mC· has surjective transition
maps. Indeed if παc ∈ Cn for some α ∈ Λ+, then write α = α1 + α2 with α1, α2 ∈
Λ+. By our assumptions the element πα1c lifts to Cn+1 so παc lifts to mCn+1. It
follows that Ri lim←−{mC·}, and hence also Ri lim←−{C·}, is almost zero for all i ≥ 1. �

Lemma 2.23. Let {C•n} be a projective system of bounded below complexes of
V –modules such that each of the maps Cj

n+1 → Cj
n is almost surjective. Assume

that for every integer i the module R1 lim←−H
i(Cn) is almost zero. Then the natural

map

(2.23.1) Hi(lim←−Cn)→ lim←−H
i(Cn)

is an almost isomorphism.

Proof. The stupid filtration on the complex of projective systems {Cn} in-
duces a spectral sequence (the “second spectral sequence of hypercohomology”)
[10, 1.4.5]

(2.23.2) Epq
2 = R lim←−

qHp(Cn) =⇒ Hp+q(R lim←−Cn).

By our assumptions R lim←−
q Hp(Cn) is almost zero unless q = 0 so this shows that

the right side of 2.23.1 is almost isomorphic to Hi(R lim←−Cn). On the other hand,
by the preceding lemma lim←−Cn is almost isomorphic to R lim←−Cn which implies the
lemma. �

3. Galois cohomology

The main application of the Almost Purity Theorem is to the computation of
Galois cohomology.

The key lemma is the following:

Lemma 3.1. Let G be a finite group, A a ring, and f : A → B an A–algebra
with G–action over A. For b ∈ B define the trace of b, denoted tr(b), to be the
element tr(b) :=

∑
g∈G g(b). Let b ∈ B be an element with tr(b) in the image of A,

and let a map to tr(b). Then for any B–module M with semi-linear action of G
and i > 0, the cohomology groups Hi(G,M) are annihilated by a.

Proof. First let us make some standard remarks about injective objects in
the category of B-modules with semi-linear action of G.

Let B{G} be the non–commutative ring with basis {eg}g∈G and multiplication
given by (beg) · (b′eg′) = bg(b′)egg′ . Then the category of B–modules with semi-
linear action of G is canonically equivalent to the category of left B{G}–modules.
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In particular, this category has enough injectives. In fact, injective modules can be
constructed as follows. The forgetful functor

F : (left B{G}-modules)→ (left B-modules)

has a right adjoint I given by sending a left B-module M to

I(M) := Homleft B-modules(B{G},M).

Here I(M) is given the structure of a left B{G} module by having e ∈ B{G} act
by sending ϕ : B{G} →M to the map

τ 7→ ϕ(τ · e), τ ∈ B{G}.
Since the functor F is exact, the functor I takes injectives to injectives. It follows
that if M is a left B{G}-module, and F (M) ↪→ N is an inclusion of the underlying
B-module into an injective B-module, then the resulting inclusion M ↪→ I(N) is
an inclusion of M into an injective B{G}-module. Note also that I is an exact
functor. In particular,

Applying this discussion with B = Z, we see that if M is any abelian group
then since I is an exact functor taking injectives to injectives we have

Hi(G, I(M)) = 0, for i > 0.

Also note that for an arbitrary ring with G-action B and left B-module M , the
underlying Z{G}-module of I(M) is isomorphic to HomZ(Z{G},M). In particular,
if N is an injective object in the category of left B{G}-modules then

Hi(G,N) = 0, for i > 0.

We conclude that if M is a B-module with semi-linear action of G, then H∗(G,M)
can be computed as follows: Choose an injective resolution M → I · in the category
of left B{G}-modules, and let I ·,G be the complex obtained by taking G-invariants.
Then

Hi(G,M) = Hi(I ·,G).
Returning to the proof of the lemma, let M → I · be an injective resolution

by B–modules with semi-linear G–action. Let m ∈ (Ii)G be an element defining a
class in Hi(G,M). Then since I · is a resolution there exists an element m′ ∈ Ii−1

mapping to m. Then tr(bm′) ∈ (Ii−1)G. On the other hand, the image of tr(bm′) in
Ii is equal to tr(bm). Since m is G–invariant, we have tr(bm) = tr(b) ·m = f(a) ·m.
Therefore f(a) ·m is a boundary which proves the lemma. �

3.2. Let V be as in 2.2, and let f : A→ B be an almost étale covering. Assume
that A and B are integral domains flat over V and integrally closed in their fields
of fractions. Then since A ⊗V K → B ⊗V K is étale, we get a morphism between
the field of fractions Frac(A)→ Frac(B). Assume that this field extension is Galois
with group G. Then G also acts on B over A since B is integrally closed in its field
of fractions.

Lemma 3.3. The extension A→ B is Galois with group G.

Proof. We have to show that the map

(3.3.1) B ⊗A B →
∏
g∈G

B, b⊗ c 7→ (. . . , bg(c), . . . )g∈G

is an almost isomorphism. Let eg ∈
∏

g∈GB be the idempotent (0, . . . , 1, 0, . . . , 0)
with a 1 in the g-th component and zeros in the other spots. We first show that
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for every α ∈ Λ+ the element παeg is in the image. This will imply that 3.3.1 is
almost surjective.

For this note that the map 3.3.1 is naturally a G-equivariant morphism where
h ∈ G acts on B ⊗A B by b ⊗ c 7→ b ⊗ h(c), and on

∏
g∈GB by sending (fg)g∈G

to the element with g-component fgh. This implies that it suffices to show that for
every α ∈ Λ+ the element παe1 is in the image, where 1 ∈ G denotes the identity
element. This element is in fact equal to the image of the element παe defined in
2.13. To verify this note that the map B → B[1/π] is injective so it suffices to show
that the image of παe in

∏
g∈GB[1/π] is equal to παe1 which follows from the fact

that A[1/π]→ B[1/π] is étale and Galois with group G. This completes the proof
of the almost surjectivity of 3.3.1.

For the almost injectivity, let M denote the kernel of 3.3.1, so we have an
almost exact sequence

0→M → B ⊗A B →
∏
g∈G

B → 0.

Using this sequence and the fact that B ⊗A B and
∏

g∈GB are almost flat over A,
one sees that M is almost flat over A.

Now observe that since A[1/π]→ B[1/π] is étale and Galois in the usual sense,
every element of M is annihilated by some element πα for some α ∈ Λ+. We
therefore get that

M = ∪α∈Λ+TorA
1 (M,A/(πα)).

Now since M is almost flat each of the modules TorA
1 (M,A/(πα)) is almost zero,

which implies that M is also almost zero. �

Proposition 3.4. Let M be a B–module with semi-linear action of G. Then
Hi(G,M) is almost zero for all i > 0 and M is almost isomorphic to B ⊗A MG.

Proof. By 2.9 and 2.12, for any α ∈ Λ+ the element πα ∈ A is in the im-
age of the trace map. From this and 3.1 it follows that πα annihilates all higher
cohomology groups.

For α ∈ Λ+, let παe ∈ B ⊗ B be the element defined in 2.13. Write παe =∑
i bi⊗ ci with bi, ci ∈ B. Since παe maps to πα in B under multiplication we have

(3.4.1) πα =
∑

i

bi · ci.

On the other hand,

(3.4.2)
∑

i

bi · g(ci) = 0

for any nontrivial g ∈ G. Indeed this can be verified after tensoring with K in
which case it is immediate. Define a map

(3.4.3) r : M → B ⊗A MG, m 7→
∑

i

bi ⊗ tr(ci ·m),

and let s : B ⊗A MG →M be the natural map. Then

(3.4.4) r ◦ s(b⊗m) =
∑

i

bi ⊗ tr(cibm) =
∑

i

bi ⊗ tr(cib)m,
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since for m ∈ MG we have tr(bm) = tr(b)m. Now for any ε ∈ Λ+ we have
πεtr(cib) ∈ A so we also have

πε
∑

i

bi ⊗ tr(cib)m = πε
∑

i

bitr(cib)⊗m.

On the other hand, using 3.4.2 we have
(3.4.5)∑

i

bi · tr(cib) =
∑

i

bi · (
∑

g

g(ci) · g(b)) =
∑

g

∑
i

bi · g(ci)g(b) =
∑

i

bi · cib = πα · b.

This shows that πεr ◦ s is equal to multiplication by πε+α for any α, ε ∈ Λ+. The
same argument shows that r is B–linear. Computing we also find that

(3.4.6) s ◦ r(m) =
∑

i

bi · tr(ci ·m) =
∑

i

∑
g

bi · g(ci)g(m) =
∑

i

bi · cim = παm.

�

To conclude this section, we record some calculations which will be used later.
Let K denote an algebraically closed field of characteristic 0, let p be a prime, and
for an integer n > 0 let µpn denote the group of pn–th roots of unity in K, and
let µp∞ := ∪nµpn ⊂ K. We view µp∞ as a topological group with the discrete
topology.

Raising to the p–th power defines a homomorphism µpn+1 → µpn and we let
Zp(1) denote lim←−n

µpn . We view Zp(1) as a topological group with the profinite
topology. Let d ≥ 1 be an integer, and let ∆ denote Zp(1)d. Let V ⊂ K denote a
subring containing µp∞ . If M is a V –module and n is an integer we write M(n)
for M ⊗Zp

Zp(1)⊗n (if n < 0 then Zp(1)⊗n is defined to be the continuous dual of
Zp(1)⊗−n).

Proposition 3.5. Let µ : ∆ → µp∞ be a continuous homomorphism, r a
positive integer, and let Lµ denote the corresponding rank 1 module over V /prV
with continuous action of ∆.
(i) If µ is trivial, then the V /prV –module H∗(∆, Lµ) is isomorphic to the exterior
algebra

∧•(V /prV )d(−1).
(ii) If µ is non–trivial, then there exists an integer n > 0 such that if ζ is a primitive
pn–th root of 1 then H∗(∆, Lµ) is annihilated by ζ − 1.

Proof. For 1 ≤ i ≤ d let µi : Zp(1) → µp∞ denote the restriction of µ
to the i–th factor of Zp(1)d. Then Lµ is isomorphic to tensor product of the
representations Lµi of Zp(1). By the Künneth formula A.7 it therefore suffices to
prove the proposition in the case when d = 1.

Since µ is continuous there exists an integer n such that the image of Zp(1) is
contained in µpn . Let gs denote the quotient Zp(1)/pnsZp(1). For each s the action
of Zp(1) on Lµ factors through gs so

(3.5.1) Hi(Zp(1), Lµ) = lim−→
s

Hi(gs, Lµ).

Choose a generator σ ∈ Zp(1), and let D : Lµ → Lµ be the map sending l ∈ Lµ to
σ(l)− l. Let Ns : Lµ → Lµ denote the map l 7→

∑
g∈gs

g(l). Then as in [43, VIII,
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§4] for i > 0 the cohomology groups Hi(gs, Lµ) are equal to the i–th cohomology
group of the complex

(3.5.2) Lµ
D−−−−→ Lµ

Ns−−−−→ Lµ
D−−−−→ Lµ

Ns−−−−→ · · · .

Furthermore, the maps Hi(gs, Lµ)→ Hi(gs+1, Lµ) occuring in the direct limit 3.5.1
are given by the morphisms of complexes

(3.5.3)

Lµ
D−−−−→ Lµ

Ns−−−−→ Lµ
D−−−−→ Lµ

Ns−−−−→ Lµ
D−−−−→ · · ·

id

y id

y ×pn

y ×pn

y ×p2n

y
Lµ

D−−−−→ Lµ
Ns+1−−−−→ Lµ

D−−−−→ Lµ
Ns+1−−−−→ Lµ

D−−−−→ · · · .

Since Lµ is annihilated by a power of p this implies that Hi(Zp(1), Lµ) = 0 for all
i ≥ 2.

If Lµ is the trivial representation, then Ns is multiplication by pns and D is the
zero map. Since Lµ is annihilated by a power of p it follows that H1(Zp(1), Lµ) =
V /prV . Now this isomorphism depends on the choice of generator σ ∈ Zp(1). We
can make this more canonical as follows. An element τ ∈ Zp(−1) can be thought of
as a morphism τ : Zp(1)→ Zp. For any such morphism τ , we obtain an extension
of Zp(1)–modules

(3.5.4) 0→ Zp → E → Zp → 0

where E is the Zp–space Z2
p with action of σ ∈ Zp(1) given by (a, b) 7→ (a, b+a·τ(σ)).

This defines an isomorphism Zp(−1)→ H1(Zp(1), Lµ) proving (i).
For (ii), let σ ∈ gs be a generator, let a ∈ Lµ be a nonzero element, and let ζ

be a primitive pn–th root of 1. By choosing n appropriately we have σ(a) = ζαa

for some positive integer α prime to p (since Lµ is nontrivial). If u ∈ V ∗ denotes
the unit 1 + ζ + · · · + ζα−1 then we can also write this as D(a) = (ζ − 1)ua. It
follows that (ζ − 1)a is equal to D(u−1a). In particular for any element a ∈ Lµ in
the kernel of Ns the corresponding cohomology class is killed by (ζ − 1). �

3.6. In fact the proof of 3.5 shows more. Let Γ∆ denote the functor taking
∆-invariants. Fix a basis σ1, . . . , σd for ∆, and let Lµi denote the representation of
Zp(1) obtained from µ by restricting to the i-th factor. Let Di : Lµi

→ Lµi
be the

map σi − 1 Then the proof of 3.5 shows that

RΓ∆(Lµ)

is represented by the tensor product of the complexes (concentrated in degrees 0
and 1)

(3.6.1) Lµi

Di // Lµi
.

This tensor product is an example of a Koszul complex. Let F be a ring, let
n ≥ 0 be an integer, and let F [x1, . . . , xn] be the polynomial ring over F . For an
F -module M , we define the Koszul complex (see for example [12, §17.2])

Kos(M) := HomF [x1,...,xn](K ·,M),

where K · is the standard Koszul resolution of F viewed as an F [x1, . . . , xn]-algebra
by sending all the xi to 0. By definition, K · is a complex concentrated in degrees
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[−n, 0], K −i =
∧i(Fn), and the differential

d : K −i → K −i+1

sends m1 ∧ · · · ∧mi to
i∑

j=1

(−1)j−1ϕ(mj) ·m1 ∧ · · · ∧ m̂j ∧ · · · ∧mi,

where ϕ : Fn → F is the map

(a1, . . . , an) 7→
∑

j

ajxj .

As explained in [12, 17.15], the complex K · is self-dual in the sense that there is
a canonical isomorphism

K ·[−d] ' Hom·
F (K , F ).

If M is any F [x1, . . . , xn]-module, we then get isomorphisms

(3.6.2)

Hom·(Kos(M), F ) = Hom·(Hom·(K ·,M), F )
' Hom·(Hom·(K ·, F )⊗M,F )
' Hom·(K ·[−d]⊗M,F )
' Hom·(K ·[−d],Hom(M,F ))
' Kos(Hom(M,F ))[d].

Now if L is any continuous representation of ∆ on a finitely generated free
V /pr-module, then a generalization of the above argument, which we leave to the
reader, shows that the cohomology

RΓ∆(L)

is represented by the Koszul complex Kos(L) (taking F = V /prV ), where we view
L as a module over V /pr[x1, . . . , xd] by choosing a basis σ1, . . . , σd for ∆ and letting
xi act on L by σi − 1.

The duality 3.6.2 then yields an isomorphism

(3.6.3) RHom(RΓ∆(L), V /pr) ' RΓ∆(Hom(L, V /pr))[d].

This isomorphism of course depends on the choice of basis for ∆. It can be made
canonical as follows.

From (3.5 (i)), we get a trace map

t : RΓ∆(V /pr)→ V /prV (−d)[−d],

which induces a pairing

(3.6.4) RΓ∆(L)⊗RΓ∆(Hom(L, V /pr)) // RΓ∆(V /pr)
t // V /pr(−d)[−d],

where the first map is induced by the natural pairing

L⊗Hom(L, V /pr)→ V /pr.

The map 3.6.4 induces a morphism

(3.6.5) RΓ∆(Hom(L, V /pr))→ RHom(RΓ∆(L), V /pr(−d)[−d]),

which upon choosing a basis becomes identified with the map 3.6.3. Therefore 3.6.5
is an isomorphism.
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3.7. Now let V , R, etc. be as in 2.16. Recall that Spec(RK) is assumed
geometrically connected. Let k(R) denote the field of fractions of R, fix an algebraic
closure k(R) ⊂ k(R), let k(R)u ⊂ k(R) denote the union of the finitely generated
subfields k(R) ⊂ L ⊂ k(R) for which the normalization of Ro

K in L is étale over
Ro

K . Let R denote the normalization of R in k(R)u.
Let η → Spec(RK) denote the geometric generic point Spec(k(R)) and let ∆

denote the fundamental group π1(Spec(Ro
K

), η). Also let ∆∞ denote the Galois
group of R∞ over RV . Note that ∆∞ is isomorphic to Zp(1)d. The natural map
R∞ → R defines a homomorphism δ : ∆→ ∆∞. Let Σ denote its kernel.

Remark 3.8. The R∞-algebra R is almost faithfully flat, being a filtering direct
limit of almost étale coverings of R∞ by 2.17.

Lemma 3.9. The morphism δ : ∆→ ∆∞ is surjective.

Proof. Let z ∈ Spec(RV ) be a point in the closed fiber, let R′ denote the
Zariski local ring of z, and let ∆′ denote the fundamental group of Spec(R′)×Spec(RV )

Spec(Ro
K

). Then there is a canonical map ∆′ → ∆ and it suffices to prove that
∆′ → ∆∞ is surjective. This is equivalent to showing that for any collections of
nonnegative integers a = (a1, . . . , ad) the ring

(3.9.1) Ra := R′[x1, . . . , xr]/(x
pa1

1 − t1, . . . , xpad

r − td)
is an integral domain, where ti ∈ R′ denotes the image of Ti in R′ under 2.16.1.
Since R′ is a local ring, for this it suffices to show that the closed fiber Spec(Ra/pRa)
is connected. This is clear because Spec(Ra/pRa) → Spec(R′/pR′) is a homeo-
morphism, and (R′/pR′)red is an integral domain being a localization of the ring
(RV /pRV )red which is an integral domain by assumption. �

Lemma 3.10. For any R–module M with continuous action of ∆ and i ≥ 0,
the natural map Hi(∆∞,M

Σ)→ Hi(∆,M) is an almost isomorphism.

Proof. Consider the spectral sequence

(3.10.1) Epq
1 = Hp(∆∞,H

q(Σ,M)) =⇒ Hp+q(∆,M)

arising from writing the functor M 7→M∆ as the composite of functors

(3.10.2) Repcts(∆) M 7→MΣ

−−−−−→ Repcts(∆∞) N 7→N∆∞
−−−−−−→ (abelian groups).

The map in the Lemma is then the natural map Ei0
1 → Hi(∆,M). To prove the

lemma it therefore suffices to show that for q > 0 the group Hq(Σ,M) is almost
zero. For this note that

(3.10.3) Hq(Σ,M) = lim−→
H

Hq(Σ/H,MH),

where the limit is taken over normal subgroups H ⊂ Σ of finite index, so it suffices
to prove that each Hq(Σ/H,MH) is almost zero. Let R∞ → SH be the finite
extension corresponding to H. Then by 2.17 the ring SH is almost étale and Galois
over R∞. The result therefore follows from 3.4. �

3.11. Let r > 0 be an integer. We can use the above results to (almost) compute
the cohomology groups H∗(∆, R/prR).

For this note that the natural map

(3.11.1) R∞/p
rR∞ → (R/prR)Σ
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is an almost isomorphism. Inded this map becomes an almost isomorphism after
applying ⊗R∞R by 3.4, and since R∞ → R is almost faithfully flat (3.8), this
implies that 3.11.1 is an almost isomorphism. Using 3.10 it follows that the natural
map

(3.11.2) H∗(∆∞, R∞/p
rR∞)→ H∗(∆, R/prR)

is an almost isomorphism. It therefore suffices to compute H∗(∆∞, R∞/p
rR∞).

Lemma 3.12. let S → S′ be a flat ring homomorphism, and let M be an S–
module with continuous action of a profinite group G over S. Then the natural
map

(3.12.1) H∗(G,M)⊗S S
′ → H∗(G,M ⊗S S

′)

is an isomorphism.

Proof. Since S → S′ is flat, we have

(3.12.2) (M ⊗S S
′)H = MH ⊗S S

′

for any subgroup H ⊂ G. By the definition of continuous group cohomology, we
have
(3.12.3)
Hi(G,M) = lim−→

H⊂G

Hi(G/H,MH), Hi(G,M ⊗S S
′) = lim−→

H⊂G

(G/H,MH ⊗S S
′)

where the limit is taken over normal subgroupsH ⊂ G of finite index. This therefore
reduces the proof to the case when G is finite.

Let P• → Z denote the canonical resolution of Z defined in [43, VII, §3].
Recall that Pj is isomorphic to ZGj+1

. Then by loc. cit. the cohomology groups
Hi(G,M) are equal to the the cohomology groups of Hom(P•,M) and similarly for
Hi(G,M ⊗S S

′). The lemma then follows by observing that the natural map

(3.12.4) Hom(P•,M)⊗S S
′ → Hom(P•,M ⊗S S

′)

is an isomorphism since each Pj is a finitely generated free module. �

3.13. It follows that

H∗(∆∞, R∞/p
rR∞) ' H∗(∆∞, S∞/p

rS∞)⊗SV
RV ,

where S = V [T1, . . . , Td]. Now the Galois cohomology of S∞/prS∞ can be com-
puted directly as follows. For positive numbers a = (a1, . . . , ad) lying in Z[1/p] we
have a well–defined element T a = T a1 · · ·T ad ∈ S∞. Let µa : Zp(1)d → µp∞ be the
character giving the action on T a. If we consider an element lim←−n

(ζ1,n, . . . , ζd,n) ∈
Zp(1)d, where ζi,n is an n–th root of unity, and if we write ai = bi/p

m for some
m, then µa sends lim←−n

(ζ1,n, . . . , ζd,n) to ζb1
1,m · · · ζ

bd

d,m. As in 3.5 let Lµa
denote the

corresponding rank 1 free (V /prV )–module with continuous ∆∞–action. Then as
an S–module with continuous ∆∞–action, we have

(3.13.1) S∞ = (⊕a,0≤ai<1 for all i Lµa
)⊗V SV .

Using 3.12 again we have

(3.13.2) H∗(∆∞, S∞/p
rS∞) ' H∗(∆∞,⊕aLµa

)⊗V SV .

Consider the decomposition

⊕aLµa
= Lµ0 ⊕ (⊕a6=0Lµa

).
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By (3.5 (i)) we have an isomorphism

H∗(∆∞, Lµ0) '
•∧

(V /prV )d(−1),

and by (3.5 (ii)) for any α ∈ Λ+ the cohomology

H∗(∆∞, Lµa
)

is annihilated by mα for all but finitely many a. From this we conclude the following:

Corollary 3.14. The RV -module H∗(∆, R/prV ) is almost finitely presented,
Hi(∆, R/prR) is almost zero for i > d, and for every i we have an almost isomor-
phism

Hi(∆, R/prR) ' (RV ⊗
i∧

(V /prV )d(−1))⊕N,
where N is annihilated by ζ − 1, for a primitive p-th root of unity ζ.

3.15. Let J ⊂ R be the ideal (T1 · · ·Td), and let J ⊂ R be the ideal of elements
mapping to nilpotent elements in R/(T1 · · ·Td). Then we can also use the above
techniques to (almost) compute H∗(∆, J/prJ). Let J (S)

∞ ⊂ S∞ be the ideal gener-
ated by elements T a1

1 · · ·T
ad

d with ai ∈ Z[1/p] and ai > 0 for all i, and let J∞ ⊂ R∞
denote the ideal J (S)

∞ ·R∞. Note the following about these ideals:
(i) We have J∞ = J ∩R∞. Therefore by 3.4 the natural map

J∞ ⊗R∞ R→ J

is an almost isomorphism.
(ii) Let A∞ denote the quotient R∞/J∞. Note that A∞ = R∞⊗S∞ (S∞/J

(S)
∞ ),

and therefore is étale over S∞/J
(S)
∞ . It follows that A∞ is p-torsion free, since

S∞/J
(S)
∞ ' V . In particular, the sequence

0→ J∞/p
rJ∞ → R∞/p

rR∞ → A∞/p
rA∞ → 0

is exact.
(iii) We have a commutative diagram

0 // (J∞/prJ∞)⊗R∞ R

��

// R∞/prR∞ ⊗R∞ R

��

// A∞/prA∞ ⊗R∞ R

��
0 // J/prJ // R/prR // R/(pr, J),

where the middle vertical arrow is an almost isomorphism, and the left vertical
arrow is almost surjective. It follows that the natural map

(J∞/prJ∞)⊗R∞ R→ J/prJ

is an almost isomorphism. As in 3.11 this implies that the natural map

J∞/p
rJ∞ → (J/prJ)Σ

is also an almost isomorphism.
Using these observations, 3.10, and 3.12, the group H∗(∆, J/prJ) is almost

isomorphic to
H∗(∆∞, J

(S)
∞ /prJ (S)

∞ )⊗SV
RV .

Going through the last step in the above proof one obtains:
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Proposition 3.16. The RV -module H∗(∆, J/prJ) is almost finitely presented,
Hi(∆, J/prJ) is almost zero for i > d, and for every i we have an almost isomor-
phism

Hi(∆, J/prJ) ' J ⊗
i∧

(V /prV )d(−1))⊕N,
where N is annihilated by ζ − 1, for a primitive p-th root of unity ζ.

3.17. In particular, projection onto the first factor of Hd(∆, J/prJ) defines a
trace map

tr : Hd(∆, J)→ J ⊗V V /prV (−d).
This can be described more canonically as follows. If we write

Hd(∆, J/prJ) ' J ⊗ (V /prV )(−d)⊕Nr,

where Nr is annihilated by ζ − 1, then as r varies we get a compatible collection of
maps

trr : Hd(∆, J)→ J ⊗V V /prV (−d)
such that the composite map

J ⊗V V /prV (−d)→ Hd(∆, J)→ J ⊗V V /prV (−d)

is the identity. Since each Nr is annihilated by ζ − 1, there is a unique such
compatible collection of maps trr.

3.18. Let L be a representation of ∆ on a finitely generated free Z/pr-module.

Proposition 3.19. (i) The R∞-module (L ⊗ R)Σ-module is almost finitely
presented.

(ii) For every i the cohomology group Hi(∆, L⊗R) is almost finitely presented
over RV , and these groups are almost zero for i > d.

Proof. For (i), note that by the second statement in 3.4 the natural map

(L⊗R)Σ ⊗R∞ R→ L⊗R

is an almost isomorphism. From this it follows that (L ⊗ R)Σ is almost finitely
presented since R/R∞ is almost faithfully flat by 3.8 (see [21, 3.4.1] for descent in
the almost category).

For (ii), let Rn ⊂ R∞ denote the subring generated by V and T 1/pn

i (notation
as in 2.16). Let ∆n,∞ ⊂ ∆∞ denote the subgroup of elements acting trivially on
Rn, so the quotient ∆∞/∆n,∞ is finite. Since (L⊗R)Σ is almost finitely presented
over R∞, for every α ∈ Λ+ there exists an integer n and a finitely presented free
module Mα over Rn with a morphism

Mα ⊗Rn
R∞ → (L⊗R)Σ

whose cokernel is annihilated by mα. By possibly increasing n, we may assume that
the map is ∆n,∞-invariant, where ∆n,∞ acts trivially on Mα. Applying induction
from ∆n,∞ to ∆∞ we obtain a morphism of ∆∞-modules

Nα ⊗Rn R∞ → (L⊗R)Σ,

where Nα is a finitely presented free Rn-module, the cokernel is annihilated by mα,
and ∆n,∞ acts trivially on Nα. The kernel of this map is again almost finitely
presented over R∞. Repeating the argument (and possibly replacing n by a bigger
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integer), we find that there exists a finitely presented Rn-module Mα with semi-
linear ∆∞-action (which restricts to the trivial action of ∆n,∞) and a morphism

Mα ⊗Rn
R∞ → (L⊗R)Σ

whose kernel and cokernel is annihilated by mα.
By the same argument used in 3.13, we can then find a decomposition as a

Rn-module with ∆n,∞-action

(3.19.1) Mα ⊗Rn
R∞ 'Mα ⊕Hα,

where RΓ∆n,∞(Hα) is annihilated by ζpn − 1 for some primitive pn-th root of unity
ζpn . After possibly increasing n, we may further assume that the p-adic valuation
of ζpn − 1 is less than α. In fact, we have a decomposition

Mα ⊗Rn
R∞ ' ⊕aMα ⊗Rn

Lµa
,

where each Lµa
is a rank 1 representation over Rn, and Hα is obtained by taking

the factors corresponding to Lµa
with a nontrivial. Since ∆∞ is commutative, the

decomposition 3.19.1 is even ∆∞-invariant. Since

RΓ∆∞(Hα) = RΓ∆∞/∆n,∞RΓ∆n,∞(Hα),

this implies that RΓ∆∞(Hα) is annihilated by mα. From this we conclude that up
to mα-torsion, the cohomology RΓ∆(L⊗ R) is represented by the Koszul complex
of the ∆∞-representation Mα, after choosing a basis for ∆∞. This implies (ii). �

Remark 3.20. By a similar argument, the cohomology groups Hi(∆, L ⊗ J)
are almost finitely presented, and zero for i > d.

3.21. The method used to prove 3.19 can also be used to study the natural
duality morphism

(3.21.1) RΓ∆(L⊗R)→ RHom(RΓ∆(L∗ ⊗ J), J ⊗V V /prV (−d)[−d])

defined in D̃(R). Here L∗ denotes the dual Hom(L,Z/pr) and

(3.21.2) Γ∆ : Repcts(∆)→ (Groups)

is the functor taking ∆–invariants.
With notation as in the proof, we compute

RΓ∆(L∗ ⊗ J)

as follows. Note first of all that since the natural maps

(L⊗R)Σ ⊗R∞ R→ L⊗R, J∞ ⊗R∞ R→ R

are almost isomorphisms, (L⊗R)Σ is almost finitely presented, and R/R∞ is almost
faithfully flat, the natural map

HomR∞((L⊗R)Σ, J∞)⊗R∞ R→ HomR(L⊗R, J)

is an almost isomorphism. It follows that the natural map

HomR∞((L⊗R)Σ, J∞)→ (L∗ ⊗ J)Σ

becomes an almost isomorphism after tensoring with R, and hence is already an
almost isomorphism. On the other hand, since (L⊗R)Σ is almost finitely presented,
we have an almost isomorphism

HomR∞((L⊗R)Σ, J∞) ' HomR∞((L⊗R)Σ, R∞)⊗ J∞.
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Now up to mα-torsion, this is equal to

HomRn
(Mα, Rn)⊗Rn

J∞.

Now decomposing J∞ into Jn := J∞ ∩ Rn plus a part whose cohomology is anni-
hilated by mα, we find that up to mα-torsion the cohomology

RΓ∆(L∗ ⊗ J)

is given by

(3.21.3) RΓ∆∞(HomRn
(Mα, Rn)⊗Rn

Jn).

Since Rn/RV is a finite flat covering there is a trace map

tr : Rn → RV

which sends Jn to JV . For a collection of integers (a1, . . . , ad), this trace map sends

T
a1/pn

1 · · ·T ad/pn

d 7→ (
∑

i=(i1,...,id)

ζi1a1 · · · ζidad)T a1/pn

1 · · ·T ad/pn

d ,

where ζ is a primitive pn-th root of unity, and the right sum is taken over i ∈
(Z/pn)d. Since we have

(
∑

i=(i1,...,id)

ζi1a1 · · · ζidad) =
d∏

j=1

(1 + ζaj + (ζaj )2 + · · ·+ (ζaj )pn−1),

it follows that

tr(T a1/pn

1 · · ·T ad/pn

d ) =

{
deg(Rn/RV ) · T a1/pn

1 · · ·T ad/pn

d if pn|aj for all j
0 otherwise.

We therefore can describe the projection onto the µ0-component (notation as in
3.13) as the map

trn :=
1

deg(Rn/RV )
· tr : Rn → RV .

As before this map sends Jn to JV , and in fact it follows from this description that
the map

Jn → HomRV
(Rn, JV ), x 7→ (y 7→ trn(xy))

is an isomorphism of free Rn-modules of rank 1. We therefore obtain an isomor-
phism between 3.21.3 and

RΓ∆∞(HomRn
(Mα, Rn)⊗Rn

HomRV
(Rn, JV )).

Remark 3.22. Note that the trace maps trn are compatible, and induce a trace
map

tr∞ : R∞ → RV ,

which again is just the projection onto the µ0-component.

Lemma 3.23. For any finitely presented Rn-module W , the natural map

HomRn
(W,Rn)⊗Rn

HomRV
(Rn, JV )→ HomRV

(W,JV )

is an isomorphism.
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Proof. If W is a finitely generated free module, the result is immediate. For
the general case, write W is a cokernel

W = Coker(F1 → F2)

of a morphism between finitely presented free Rn-modules. We then have an exact
sequence

0→ HomRn(W,Rn)→ HomRn(F2, Rn)→ HomRn(F1, Rn).

Tensoring this sequence with HomRV
(Rn, JV ) and comparing it with

0→ HomR(W,JV )→ HomR(F2, JV )→ Hom(F1, JV )

then gives the result. �

3.24. We therefore obtain that up to mα-torsion, RΓ∆(L∗ ⊗ J) is equal to

RΓ∆∞(HomRV
(Mα, JV )).

By Koszul duality 3.6.2, this induces an isomorphism up to mα-torsion

RHom(RΓ∆(L⊗R), JV ) ' RΓ∆(L∗, J))[d].

We leave to the reader the verification that up to mα-torsion this map induces the
map 3.21.1, thereby proving the following theorem:

Theorem 3.25. The morphism 3.21.1 is an almost isomorphism.

3.26. More generally if E ⊂ {1, . . . , n} is a subset and DE ⊂ D the union of
the divisors Di with i ∈ E, then we define JE ⊂ R to be the ideal of elements
mapping to nilpotent elements in the coordinate ring of DE ×X Spec(R).

If F ⊂ {1, . . . , n} denotes the complement of E, then there is a canonical map
JF ⊗ JE → J which induces for any representation L of ∆ a canonical map

(3.26.1) RΓ∆(L⊗ JE)⊗L RΓ∆(L∗ ⊗ JF )→ RΓ∆(J).

Composing with the trace map we obtain a morphism

(3.26.2) RΓ∆(L⊗ JE)→ RHom(RΓ∆(L∗ ⊗ JF ), J ⊗V V /prV (−d)[−d]).
A local calculation as in the proof of 3.25 shows that this is an almost isomorphism.

4. Logarithmic geometry

4.1. In order to globalize the results of the preceding section, it is useful to
introduce a bit of log geometry in the sense of Fontaine, Illusie, and Kato [29].

4.2. Let S be a scheme which we view as a prelog scheme with the trivial log
structure, and let (X,MX)→ S be a morphism of prelog schemes (we usually write
α : MX → OX for the map in the definition of a prelog structure). Let E be a
quasi–coherent OX–module.

Definition 4.3 ([38, 1.1.2]). A log derivation of (OX ,MX) with values in E is
a pair ∂ = (D, δ), where δ : OX → E is a derivation and D : MX → E is an additive
map such that for every local section m ∈ MX we have α(m)D(m) = δ(α(m)) (so
D(m) should be viewed as “d log(α(m))”).

Remark 4.4. Note that the map D and the equation α(m)D(m) = δ(α(m))
determines the derivation δ since a derivation is determined by its value on the
sections of O∗

X .
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4.5. If Ω1
(X,MX)/S denotes the logarithmic differentials [29, 1.7], then there is

a universal log derivation (see for example [38, 1.1])

(4.5.1) d : OX → Ω1
(X,MX)/S , D : MX → Ω1

(X,MX)/S .

In other words, if E is a quasi–coherent OX–module then there is a canonical
bijection
(4.5.2)

(log derivations of (OX ,MX) with values in E) ' HomOX
(Ω1

(X,MX)/S , E).

Note in particular that if X is affine and P → Γ(X,MX) is a chart, then since
Ω1

(X,P )/S ' Ω1
(X,MX)/S (this equality is explained in [29, 1.7]), to give a morphism

Ω1
(X,MX)/S → E is equivalent to giving an additive map D : P → Γ(X,E) and

a derivation δ : Γ(X,OX) → Γ(X,E) so that for all p ∈ P we have α(p)D(p) =
δ(α(p)).

4.6. Now let the notation be as in 3.11, let X = Spec(R), let MX be the log
structure defined by the divisor Spec(R)−Spec(Ro), let MR denote Γ(X,MX), and
let Ω1

(R,MR)/V denote the global sections of Ω1
(X,MX)/Spec(V ). Since there exists a

morphism as in 2.16.1, the image of MR under the map d log generates Ω1
(R,MR)/V ,

and therefore for any R–module E, a homomorphism Ω1
(R,MR)/V → E is determined

by an additive map

(4.6.1) D : MR → E.

As in 3.11 let r be an integer. We now construct a morphism

(4.6.2) c : Ω1
(R,MR)/V → H1(∆, R/prR(1))

depending only on Spec(R) with its log structure. For this we first construct an
additive map

(4.6.3) D : MR → H1(∆, R/prR(1)).

Note that the map MR → R is an inclusion. For every s ≥ 0 let Ms ⊂ R denote
the set of elements f ∈ R with fps ∈ MR. There is then a natural exact sequence
in the category of integral monoids

(4.6.4) 0 −−−−→ µps −−−−→ Ms
×ps

−−−−→ MR −−−−→ 0.

Raising to the p-th power induces a surjectionMs+1 →Ms. Let E := lim←−Ms denote
the projective limit, and note that the sequences 4.6.4 induce an exact sequence
(again in the category of integral monoids)

(4.6.5) 0 −−−−→ Zp(1) −−−−→ E −−−−→ MR −−−−→ 0.

The action of ∆ on R induces an action of ∆ on E which makes this an extension
in the category of monoids with continuous ∆–action. The sequence 4.6.5 therefore
induces an additive map

(4.6.6) MR → H1(∆,Zp(1)).

Composing with the natural map H1(∆,Zp(1)) → H1(∆, R/psR(1)) we obtain a
map

(4.6.7) D : MR → H1(∆, R/psR(1)).
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Theorem 4.7. The map Mgp
R ⊗ZR/p

sR→ H1(∆, R/psR(1)) induced by 4.6.7
descends to Ω1

(R,MR)/V , and the resulting map

(4.7.1) Ω1
(R,MR)/V ⊗R RV /p

sRV (−1)→ H1(∆, R/psR)

induces an almost morphism

(4.7.2)
•∧
(Ω1

(R,MR)/V ⊗R RV /p
sRV (−1))→ H∗(∆, R/psR).

Proof. For f ∈ R∗, let Tf denote the Zp(1)–torsor with ∆–action inducing
c(f) ∈ H1(∆, R/psR(1)). The torsor Tf is equal to the projective limit Tf =
lim←−Tf,n, where Tf,n is the set of elements g ∈ R∗ such that gpn

= f and the map
Tf,n+1 → Tf,n sends g to gp.

Lemma 4.8. The map c|R∗ : R∗ → H1(∆, R/psR(1)) factors through the image
of d log : R∗ → Ω1

(R,MR)/V .

Proof. It suffices to show that if d log(f) = d log(g) then the torsors with
∆–action Tf and Tg are isomorphic, or equivalently that the torsor with ∆–action
Tfg−1 ' Tf ∧ T−1

g is trivial. This is clear, for if d log(f) = d log(g) then

(4.8.1) d log(fg−1) = d log(f)− d log(g) = 0

and hence d(fg−1) = 0. Since Spec(R ⊗V K) → Spec(K) is formally étale this
implies that fg−1 ∈ R∩K = V . This in turn implies that the action of ∆ on Tfg−1

is trivial which proves the lemma. �

For the proof of 4.7, consider first the case when R = S := V [T1, . . . , Td]. In
this case MR = V ∗ ⊕ Nd, where the i–th generator ei ∈ Nd maps to the element
ti in S. The class c(ei) ∈ H1(∆, S/prS) is then given by the Zp–torsor of p–power
roots of ti in S. Note that the action of ∆ on this torsor factors through ∆∞. It
follows that in this case the map c factors through a map

(4.8.2) c̃ : V ∗ ⊕ Nd → H1(∆∞, S∞/p
rS∞(1)).

Furthermore, c̃(V ∗) = 0 which proves that c̃ factors through Ω1
(S,MS)/V . Chasing

through the construction of the isomorphism

(4.8.3) (SV /p
rSV )d ' H1(∆∞, S∞/p

rS∞(1))

given in 3.11, one sees that the map c̃ induces an isomorphism

(4.8.4) Ω1
(S,MS)/V ⊗S (SV /p

rSV ) ' (SV /p
rSV )⊗Z Zd → H1(∆∞, S∞/p

rS∞(1)).

This proves the theorem in the case when R = S.
For the general case choose a formally étale map S → R as in 2.16.1.

Lemma 4.9. The natural map R∗ ⊕S∗ MS →MR is surjective.

Proof. Let ti ∈ R be the image of Ti. Then to prove the lemma it suffices to
show that any element m ∈ MR ⊂ R can be written as uta1

1 · · · t
ad

d where u ∈ R∗.
This is clear, for if m ∈MR let ai denote the valuation of the image of m in the local
ring of the generic point of the divisor of Spec(R) lying over Spec(S/(Ti)) ⊂ Spec(S)
(if the inverse image is empty then set ai = 1). Since R is regular, the elements m
and ta1

1 · · · t
ad

d must differ by a unit. �
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By the discussion at the beginning of the proof the composite

(4.9.1) MS ⊕S∗ R
∗ // MR

c // H1(∆, R/prR(1))

is equal to the composite

(4.9.2) MS ⊕S∗ R
∗ a // Ω1

(S,MS)/V ⊗S R // H1(∆∞, S∞/p
rS∞)⊗S R

uujjjjjjjjjjjjjjjj

H1(∆, R/prR).

where the map a is induced by the map d log : R∗ → Ω1
(R,MR)/V ' Ω(S,MS)/V ⊗SR.

By the surjectivity in 4.9 this implies 4.7. �

Corollary 4.10. There is a canonical (i.e. depending only on Spec(R) with
its boundary divisor) almost morphism, called the trace map,

(4.10.1) Hd(∆, J/prJ)→ Ωd
R/V ⊗V V /prV (−d).

Proof. This follows from 3.16, 4.7, and the observation that there is a canon-
ical isomorphism J ⊗ Ω1

(R,MR)/V ' Ω1
R/V . �

Restating 3.25 we obtain:

Corollary 4.11. The trace map induces a canonical isomorphism in D̃(RV )

(4.11.1) RΓ∆(L⊗R)→ RHom(RΓ∆(L∗ ⊗ J),Ωd
R/V ⊗V V /prV (−d)[−d])

More generally, for a subset E ⊂ {1, . . . , n} with complementary set F there is a
canonical isomorphism in D̃(R)

(4.11.2) RΓ∆(L⊗ JE)→ RHom(RΓ∆(L∗ ⊗ JF ),Ωd
R/V ⊗V V /prV (−d)[−d])

5. Coverings by K(π, 1)’s

5.1. The key to globalizing the above computations is the notion of aK(π, 1). If
X is a scheme, let Fet(X) denote the site whose underlying category is the category
of finite étale morphisms U → X, and whose coverings are surjective morphisms.
We write XFet for the associated topos. The inclusion Fet(X) ⊂ Et(X) induces a
morphism of topoi

(5.1.1) π : Xet → XFet.

If X is connected and x̄ → X is a geometric point, then XFet is equivalent to the
category of sets Fx̄ with continuous action of the fundamental group π1(X, x̄) so
in particular for an abelian sheaf F the cohomology H∗(XFet, F ) is isomorphic to
group cohomology H∗(π1(X, x̄), Fx̄).

In general, π∗ identifies the category XFet with the category of sheaves F ∈ Xet

for which F is equal to the union of its locally constant subsheaves.
In what follows let Λ denote Z/(n) for some integer n invertible on X.

Remark 5.2. It is always true that for a locally constant sheaf L of Λ–modules
onX the natural mapH1(XFet, L)→ H1(Xet, π

∗L) is an isomorphism. This follows
from interpreting these groups as classifying extensions of Λ by L and noting that
any such extension is also locally constant.
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Definition 5.3. A scheme X is a K(π, 1) if for integer n invertible on X and
every locally constant sheaf F of Z/(n)–modules the natural map F → Rπ∗π

∗F is
an isomorphism.

Theorem 5.4. Let V be a discrete valuation ring with field of fractions K of
characteristic 0 and perfect residue field k. Let X/V be a smooth scheme. Then for
every point x ∈ X in the closed fiber of X there exists a Zariski open neighborhood
U ⊂ X of x such that the geometric generic fiber UK is a K(π, 1). In particular, if
X/V is also proper then every point x ∈ X is contained in an open subset U ⊂ X
such that UK is a K(π, 1).

Proof. By induction on the relative dimension d of X/V . We can without
loss of generality assume that X is affine.

The case d = 1 can be seen as follows. Choose an embedding X ↪→ PV into
some projective space and let X be the normalization of the closure. The generic
fiberXK is then a normal proper 1–dimensionalK–scheme whence a smooth proper
curve. Since XK−XK is not empty, the cohomological dimension of XK is 1. This
case therefore follows from 5.2.

The case d = 1 can also be relativized. As in [1, XI.3.1] define a morphism
f : Z → W of K–schemes to be an elementary fibration if it extends to a proper
smooth morphism f̄ : Z → W such that the map Z − Z → W (where Z − Z is
given the reduced structure) is finite étale and surjective and for every geometric
point w̄ → W the geometric fiber Zw̄ is a smooth connected (and automatically
proper) curve. Then Zw̄ is a smooth affine curve. We extend this notion slightly
by defining a morphism f : X → Y of V –schemes to be an elementary fibration if
the generic fiber XK → YK is an elementary fibration.

Lemma 5.5. Let f : Z →W be an elementary fibration of smooth K–schemes.
If W is a K(π, 1) then Z is also a K(π, 1).

Proof. We have to show that for any locally constant constructible sheaf L
on Z and i > 0 the sheaf Riπ∗L on ZFet is zero. For this we may clearly replace
W by a finite étale cover, and hence making the base change (Z −Z)→W we can
assume that the complement Z − Z is given by a nonempty collection of sections
s : W → Z. If U → Z is finite étale and surjective and U denotes the normalization
of Z in U , then it follows from Abhyankar’s lemma and the assumption char(K) = 0
that U → W is also smooth and proper and that U − U → W is finite étale and
surjective. Replacing Z by a finite étale covering where L is trivial we may therefore
assume that L = Λ. We may also base change to K and hence may assume that
K is algebraically closed. Furthermore, it suffices to show that for any cohomology
class α ∈ Hi(Zet,Λ) there exists a finite étale surjective morphism Z ′ → Z such
that the pullback of α to Z ′ is trivial.

Next consider the Leray spectral sequence

(5.5.1) Eij
2 = Hi(W,Rjf∗Λ) =⇒ Hi+j(Z,Λ).

Let j : Z ↪→ Z and i : (Z − Z) ↪→ Z be the inclusions. Since (Z − Z) ⊂ Z
is a smooth divisor, there is by cohomological purity [1, XVI.3.9] a distinguished
triangle on Z

(5.5.2) Λ→ Rj∗j
∗Λ→ i∗Λ(−1)[−1]→ Λ[1].
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This induces a long exact sequence

(5.5.3) · · · → Rsf̄∗Λ→ Rsf∗Λ→ Rs−1f̄∗(i∗Λ(−1))→ · · · .

Now the sheaves Rsf̄∗Λ and Rs−1(i∗Λ(−1)) are locally constant constructible and
their formation commutes with arbitrary base change [1, XVI.2.2]. In particular,
the boundary map

R0f̄∗i∗Λ(−1)→ R2f̄∗Λ
is an isomorphism as this can be checked fiber by fiber. Also since f̄ ◦ i is étale we
have Rif̄∗(i∗Λ(−1)) = 0 for i > 0. This implies that

R0f∗Λ ' R0f̄∗Λ, R1f∗Λ ' R1f̄∗Λ, Rsf∗Λ = 0 for s > 1.

In particular, the sheaves Rsf∗Λ are locally constant constructible. Since W is
a K(π, 1) any cohomology class in Hi(W,Rjf∗Λ) for i > 0 is killed by a finite
étale extension of W . We may therefore assume that α is given by a class in
H0(W,Rjf∗Λ). Furthermore, since Rjf∗Λ is zero for j ≥ 2 it suffices to consider
the case of j = 1 which follows from 5.2. �

To prove 5.4 it therefore suffices by induction on d to show that for any point
x ∈ X of the closed fiber there exists a neighborhood U of x and an elementary
fibration f : U → W with W smooth. For if W ′ ⊂ W is an open neighborhood of
f(x) which is a K(π, 1) then 5.5 implies that (U ×W W ′)K is also a K(π, 1). For
this we may as well replace V by its maximal unramified extension and hence may
assume that the residue field k is algebraically closed. Furthermore it suffices to
consider the case of a k–rational point x of X.

We can without loss of generality assume that X is affine. Choose an immersion
X ↪→ Pr for some r, and let X be the normalization of the closure of X. Choose a
very ample sheaf M on X and let X ↪→ PN

V be the embedding into projective space
provided by M⊗r for some r ≥ 2. Let Y = X − X with the reduced subscheme
structure, and let Y o ⊂ Y denote the open subset where Y is smooth over V . Note
that the generic fiber of Y o is dense in the generic fiber YK .

Lemma 5.6. There exist hyperplanes H1, . . . ,Hd−1 in PN
V containing x such

that the intersection L = H1∩· · ·∩Hd−1 has relative dimension N−d+1 over V and
L meets X transversally. We can furthermore choose the hyperplanes H1, . . . ,Hd−1

such that the intersection LK∩XK is contained in the smooth locus of XK , LK∩YK

is contained in Y o
K , and LK meets XK and Y o

K transversally. In fact, if P denotes
the space classifying (d − 1)–hyperplanes in PN

V containing x (see the proof for
a precise description of this space), then there is an open subset U ⊂ P dense in
every fiber such that for any morphism Spec(V )→ U the corresponding hyperplanes
H1, . . . ,Hd−1 satisfy the above conditions.

Proof. Let x : Spec(V ) → X be a morphism sending the closed point to the
previously denoted point x. The functor classifying hyperplanes in PN through
x is easily seen to be represented by a projective smooth scheme over V (and
in particular with equidimensional fibers). It follows that the functor classifying
(d− 1) hyperplanes in PN containing x is also represented by a projective smooth
V –scheme P.

There is an open subset U1 ⊂ P classifying the condition that the intersection
L has dimension N − d+ 1 in each fiber, and the open subset U1 is dense in every
fiber. The condition that L meets X transversally is equivalent to the condition
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that X ∩L is smooth over V . Consider the universal intersection Z = (X×P)∩L
over P where L denotes the intersection of the universal hyperplanes over P. Let
R ⊂ Z be the closed subset where Z is not smooth over P and let W ⊂ P be its
image. The subset W is a constructible subset of P whose complement is dense in
both the generic and closed fiber by [1, XI.2.1]. Therefore the complement U2 ⊂ P
of the closure of W is also dense in every fibre whence U1∩U2 is also nonempty and
dense in every fiber. Furthermore as in the proof of [1, XI.3.1] there exists a dense
open subset V ⊂ PK classifying hyperplanes such that LK ∩ XK is contained in
the smooth locus of XK and LK ∩YK is contained in Y o

K . Let Q ⊂ P be the closure
of the complement of V (with the reduced structure). The scheme Q is flat over
V and hence the dimension of the components of the closed fiber of Q is strictly
smaller than the dimension of Pk. In particular the intersection Qc ∩ U1 ∩ U2 is
dense in every fiber. This implies the lemma. �

By a similar reasoning we can also choose a hyperplane H0 not containing x
meeting X ∩ L transversally and such that the intersection Y ∩ (H0 ∩ L)K = ∅. If
P′ denotes the space classifying d hyperplanes H0, . . . ,Hd−1, then as in the proof
of 5.6 one sees that there exists an open subset U ′ ⊂ P′ dense in every fiber such
that H1, . . . ,Hd−1 satisfy the conditions of the lemma, H0 does not contain x, H0

meets X ∩ L transversally, and the intersection Y ∩ (H0 ∩ L)K is empty.
On Y o ⊂ Y the map Ω1

PN /V |Y o → Ω1
Y o/V is surjective. Let GrPN (Ω1

PN /V , d−1)
denote the scheme over PN classifying rank d−1 quotients of Ω1

PN /V . We then obtain
a morphism Y o → GrPN (Ω1

PN /V , d − 1) over PN . Let Z ⊂ GrPN (Ω1
PN /V , d − 1) be

the closure of Y o and let π : Z → Y be the projection. Then on Z there is a
quotient Ω1

PN /V |Z → E .

Lemma 5.7. As in 5.6, let P denote the V –scheme parametrizing (d − 1)–
hyperplanes in PN through x, and for a (scheme–valued) point of P corresponding
to hyperplanes H1, . . . ,Hd−1 let L denote the intersection H1 ∩ · · · ∩Hd−1. Then
there exists an open subset V ⊂ P dense in every fiber such that if H1, . . . ,Hd−1

define a point of V and z ∈ Z with image y ∈ Y then the natural map Ω1
PN

V /V
(y)→

E (z)⊕ Ω1
L/V (y) is an isomorphism.

Similarly, if P′′ denotes the space of (d− 1) hyperplanes in PN
V (not necessarily

through x) then there exists an open subset V ⊂ P′′ dense in every fiber such that
if H1, . . . ,Hd−1 define a point of V and z ∈ Z with image y ∈ Y then the natural
map Ω1

PN
V /V

(y)→ E (z)⊕ Ω1
L/V (y) is an isomorphism.

Proof. We give the proof of the first statement leaving to the reader the task
of proving the second statement using the same argument.

Let V ⊂ P be the subfunctor associating to any V –scheme T the subset of
P(T ) classifying hyperplanes H1, . . . ,Hd−1 such that the map Ω1

PN
V /V
|ZT
→ E |ZT

⊕
Ω1

L/T |ZT
is an isomorphism. The fact that Z is proper over V implies that in fact

V is represented by an open subset of P. We claim that V is dense in every fiber.
To verify this it suffices to consider the base change of Z by a map V → Ω,

where Ω is an algebraically closed field. We claim that for any nonempty affine
open subset U ⊂ ZΩ there exists a dense open subset U ′ ⊂ U classifying classifying
hyperplanes H1, . . . ,Hd−1 such that the map Ω1

PN
V /V

(y) → E (z) ⊕ Ω1
L/V (y) is an

isomorphism for every z ∈ U ′ mapping to y ∈ YΩ. Let X0, . . . , XN denote the
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coordinates of PN . After shrinking on U and possibly changing coordinates we can
assume that U maps to the open subset AN

Ω ⊂ PN
Ω given by XN 6= 0 and that

E |U is isomorphic to Od−1
U . There is also a dense open subset A ⊂ P classifying

hyperplanes H1, . . . ,Hd−1 none of which are contained in {XN = 0}. A point of A
is given by the coefficients of linear equations

(5.7.1)
N−1∑
i=0

aiνXi = cν ,

where ν = 1, . . . , d− 1 and cν ∈ Ω (in the case when we require the hyperplanes to
pass through x the constants cν will be fixed). Let R be the coordinate ring of U .
The basis dXi induces an isomorphism Ω1

PN
Ω /Ω
|U ' RN and the quotient Ω1

PN
Ω /Ω
|U →

Ω1
L/Ω|U has kernel the submodule generated by the vectors vν = (a0ν , . . . , aN−1ν).

Let F ⊂ RN be the kernel of the surjection RN → E |U . The intersection I :=
F ∩ΩN ⊂ RN must have dimension less than or equal to N − d+ 1 since the map
I ⊗Ω R→ F is injective (because I ⊗Ω R→ RN is injective) and F has rank equal
to N − d+ 1. From this it is clear that there exists a dense open subset of A such
that

I ∩ Span(vν)d−1
ν=1 = {0}.

This gives the desired dense open subset. �

We can therefore choose hyperplanes H0, . . . ,Hd−1 such that the conditions in
5.6 are satisfied, such that for every z ∈ Z with image y ∈ Y the natural map
Ω1

PN
V /V

(y)→ E (z)⊕Ω1
L/V (y) is an isomorphism, and such that H0 does not contain

x, H0 meets X ∩ L transversally and such that the intersection Y ∩ (H0 ∩ L)K is
empty. After changing coordinates, we can further assume thatH0 is the hyperplane
{X0 = 0}. Let C denote the intersection H0 ∩ · · · ∩ Hd−1. Choosing coordinates
write

(5.7.2) Hi :
N∑

ν=0

aiνXν = 0,

and consider the map

(5.7.3) PN − C → Pd−1, yi =
∑

ν

aiνXν .

Let U ⊂ X be the neighborhood of x which is the complement of H0 ∩X. We then
obtain a morphism ε : U → Pd−1. The fiber ε−1ε(x) is isomorphic to U ∩ L. In
fact, let Ad−1 ⊂ Pd−1 denote the open subset where y0 6= 0. By associating to a
point (y1, . . . , yd−1) the hyperplanes yi − ai0 =

∑
ν≥1 aiνXν we obtain a morphism

Ad−1 → P′′ over V . For s ∈ Ad−1 let Ls denote the intersection of the (d − 1)–
hyperplanes corresponding to the image of s. Then the fiber of ε over s is equal
to U ∩ Ls. By 5.7, for general choice of H0, . . . ,Hd−1, there exists an open subset
W ⊂ Ad−1 containing ε(x) such that for every s ∈ W the conditions of 5.7 are
satisfied for the image of s in P′′. It follows that for a point s ∈WK of the generic
fiber the intersection X ∩Ls is smooth. Using the argument given in [1, XI, page 7
last paragraph] one shows that the map XK →WK is an elementary fibration. �

Corollary 5.8. Let X/V be a smooth proper scheme. Then for any closed
point x ∈ X the scheme Spec(OX,x̄)K is a K(π, 1).
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Proof. The scheme Spec(OX,x̄) is a projective limit of K(π, 1)’s and a stan-
dard limit argument shows that such a projective limit is also a K(π, 1). �

Example 5.9. Let K be an algebraically closed field of characteristic 0, and
X/K a smooth K–scheme with a divisor D ⊂ X with normal crossings. Let
x ∈ X(K) be a point and let Y denote Spec(OX,x̄). Then if Y o denotes Y×X(X−D)
then Y o is a K(π, 1).

For this note first that we are immediately reduced to the case when X =
Ad, x is the origin, and D is the standard hyperplanes. By Abhyankar’s lemma
the fundamental group ∆ of Y o is isomorphic to Ẑ(1)r where r is the number of
components of D passing through x. Let L be a locally constant sheaf of Λ–modules
on Y o. By devissage we may assume that Λ = Z/(p) and that L corresponds to
a simple representation of ∆. In this case L is isomorphic to a tensor product
Lµ1 ⊗ · · · ⊗ Lµr where Lµj is a representation of the j–th factor of Ẑ(1) in ∆. By
the Künneth formula this further reduces the proof to the case when X = A1 and
D is the origin. In this case Y o is a projective limit of K(π, 1)’s and hence is also
a K(π, 1).

This argument also proves the following. Assume given an étale morphism

(5.9.1) π : X → Spec(K[X1, . . . , Xd])

such that D is equal to the inverse image of the standard hyperplanes. Let j :
Xo := (X −D) ↪→ X be the inclusion and let j be an integer. For n = (n1, . . . , nd)
let Xn → X denote the scheme obtained by taking the ni–th roots of Xi, and let
jn : Xo

n ↪→ Xn be the inclusion. Then for any locally constant constructible sheaf
L and cohomology class α ∈ Rij∗L (i > 0) there exists integers n such that the
image of α in Rijn∗L is zero, jn∗L is locally constant constructible, and the natural
map j∗njn∗L → L is an isomorphism. Indeed this can be verified after passing to
the strict henselization of X at a point in which case it follows from the above
computations.

Corollary 5.10. Let X be a smooth proper V –scheme and D ⊂ X a divisor
with normal crossings relative to V . Let Xo denote the complement of D. Then
for any closed point x ∈ X the scheme (Spec(OX,x̄)K)o := Xo

K
×X Spec(OX,x̄) is a

K(π, 1).

Proof. LetX† denote Spec(OX,x̄) and let L be a locally constant constructible
sheaf on X†o

K
. We have to show that for any cohomology class α ∈ Hi(X†o

K
, L) with

i > 0 there exists a finite étale surjection V → X†o
K

over which α becomes zero.
Choose a formally étale morphism

(5.10.1) π : X† → Spec(V [X1, . . . , Xd])

such that D is equal to the inverse image of {X1 · · ·Xd = 0}. Let j : X†o ↪→ X† be
the inclusion. By 5.9 and consideration of the Leray spectral sequence

(5.10.2) Epq
2 = Hp(X†

K
, Rqj∗L) =⇒ Hp+q(X†o

K
, L),

there exists integers n = (n1, . . . , nd) such that if X†
n denotes the scheme

(5.10.3) X ×Spec(V [X1,...,Xd]) Spec(V [X1/n1
1 , . . . , X

1/nd

d ])

with inclusion jn : X†o
n ↪→ X†

n then α is given by a class in Hi(X†
n,K

, jn∗L), jn∗L is

locally constant constructible, and j∗njn∗L → L is an isomorphism. Replacing X†
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by X†
n we may therefore assume that L extends to a sheaf on X†

K
which we again

denote by L and that α is obtained from a cohomology class in Hi(X†
K
, L). Since

X†
K

is a K(π, 1) the result follows. �

In fact 5.4 can be generalized as follows to also take into account a boundary.

Theorem 5.11. With notation as in 5.4, let D ⊂ X be a divisor with simple
normal crossings relative to V , set Xo := X − D. Let D = D1 ∪ · · · ∪ Dn with
each Di an irreducible divisor. For a subset A ⊂ {1, . . . , n} (possibly empty) let DA

denote the intersection ∩i∈ADi, and let Do
A denote DA − (∪j /∈ADj). Then for any

point x ∈ X in the closed fiber there exists a Zariski open neighborhood U of x such
that each Do

A,K
∩ UK is a K(π, 1).

Proof. Note first that after possibly replacing the polarization M giving the
embedding X ↪→ PN by M⊗r for some r, we may assume that the closure Di ⊂ X
of each irreducible component Di is normal. Let ε : X → W be the elementary
fibration constructed in the proof of 5.4 by projection from the hyperplanes Hi.
Then an examination of the proof and standard Bertini type arguments shows that
we can furthermore choose the hyperplanes H1, . . . ,Hd−1 so that if L = H1 ∩ · · · ∩
Hd−1 then the intersection LK∩Di,K is transverse for all i so that this intersection is
an étale K–scheme, and furthermore can choose the Hi’s such that the projection of
the double intersections Di ∩Dj have image a divisor with simple normal crossings
in W . Furthermore, we can choose the hyperplane H0 so that it does not meet the
intersections LK ∩Di,K . Then it follows from the proof that after some shrinking
on W the schemes Di,K are finite and étale over WK . This in turn implies that the
map Xo

K
→ WK is also an elementary fibration whence Xo

K
is a K(π, 1), and the

statement about the higher intersections follows by induction.
�

6. The topos X o
K

6.1. Let X/V be a smooth V –scheme, and let D ⊂ X be a divisor with normal
crossings relative to V . For an X–scheme π : U → X let Uo denote U − π−1(D).

Define a site S as follows. The objects of S are pairs (U,N), where U is
an étale separated X–scheme of finite type and N → Uo

K
is a finite and étale

morphism. A morphism (U ′, N ′) → (U,N) is given by a commutative diagram of
X–morphisms

(6.1.1)

N ′ −−−−→ Ny y
U ′ −−−−→ U.

A collection of morphisms {(Ui, Ni)→ (U,N)} is defined to be a covering if {Ui →
U} is a covering in Et(X) and {Ni → N} is a covering in Et(Xo

K
). We write X o

K
for the resulting topos.

Lemma 6.2. The category S has finite projective limits.

Proof. By [1, I.2.3], it suffices to show that finite products and equalizers
are representable in S . If {(Ui, Ni)}ni=1 is a finite set of objects in S , then their
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product is given by the pair

(6.2.1) (U1 ×X U2 × · · · ×X Un, N1 ×Xo
K
N2 × · · · ×Xo

K
Nn).

For the existence of equalizers, consider two morphisms f, g : (U1, N1) → (U2, N2)
in S , and let N† (resp. U†) denote the equalizer of the morphisms N1 ⇒ N2 (resp.
U1 ⇒ U2). Then (U†, N†) represents the equalizer of f and g. The only point that
needs verification is that N† is finite over U†o

K
. For this note that N† is equal to

the fiber product of the diagram

N2

∆

��
N1

a×b // N2 ×Xo
K
N2,

where we write a, b : N1 → N2 for the two morphisms. Since N2 → Xo
K

is separated
this implies that N† is a closed subscheme of N1. By a similar argument U† is a
closed subscheme of U1. We therefore have a commutative diagram

N† � � //

��

N1

c

��
U†o

K

� � // Uo
1,K

,

where the horizontal arrows are closed immersions, and c is finite. It follows that
N† → U†o

K
is also finite. �

Remark 6.3. A similar argument to the one in the proof of 6.2 shows that a
finite projective limit of finite étale morphisms is finite and étale. Indeed to verify
this it suffices to consider finite products (immediate) and equalizers (proof of 6.2).

6.4. There is a continuous morphism of sites S → Et(Xo
K

) sending (U,N)
to the composite N → Uo

K
→ Xo

K
. This functor preserves finite inverse limits

since it preserves products and equalizers, and therefore by [1, IV.4.9.2] induces a
morphism of topoi

(6.4.1) uX : Xo
K,et
→X o

K
.

There is also a continuous morphism of sites Et(X) → S sending U → X to
(U, id : Uo

K
→ Uo

K
). This functor also preserves finite projective limits, and induces

a morphism of topoi

(6.4.2) νX : X o
K
→ Xet.

Note that the composite νX ◦ uX : Xo
K,et

→ Xet is just the morphism of topoi
induced by the morphism of schemes Xo

K
→ X.

Finally there is a morphism of sites Fet(Xo
K

) → S sending N → Xo
K

to the
object (X,N) ∈ S . This morphism induces a morphism of topoi

(6.4.3) εX : X o
K
→ Xo

K,Fet
.

Observe that εX ◦ uX is the natural projection Xo
K,et
→ Xo

K,Fet
.

Lemma 6.5. Let L be a locally constant constructible abelian sheaf on Xo
K

.
Then RiuX∗L = 0 for i > 0 and uX∗L is the sheaf (U,N) 7→ L(N).
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Proof. Fix an integer i > 0. By 5.11 any object of S can be covered by
objects (U,N) with Uo a K(π, 1). To prove that RiuX∗L = 0, it therefore suffices to
show that for any such (U,N) ∈ S and class o ∈ Hi(Xo

K,et
|u−1

X (U,N), L), there exists
a covering (U ′, N ′)→ (U,N) such that the pullback of o to Hi(Xo

K,et
|u−1

X (U ′,N ′), L)
is zero.

For this note that for any (U,N) ∈ S there is a natural isomorphism

(6.5.1) Hi(Xo
K,et
|u−1

X (U,N), L) ' Hi(Net, L).

Now if Uo is a K(π, 1), then N is also a K(π, 1). This implies that there exists a
finite étale covering N ′ → N such that o maps to zero in Hi(N ′

et, L). The resulting
covering (U,N ′)→ (U,N) in S then kills o.

The description of uX∗L is immediate from the definitions. �

Lemma 6.6. Assume that Xo is a K(π, 1). Then for any abelian sheaf F in
Xo

K,Fet
, the natural map F → RεX∗ε

∗
XF is an isomorphism.

Proof. Note that by the preceding lemma, RεX∗ε∗XF ' R(εX ◦uX)∗(F |Xo
K,et

).
The lemma therefore follows from the fact that Xo is a K(π, 1) which implies that
the adjunction map F → R(εX ◦ uX)∗(F |Xo

K,et
) is an isomorphism. �

6.7. An annoying technical difficulty about the topos X o
K

is that most of the
sheaves we will consider will be obtained from presheaves by sheafification. This
means that if U ∈ Et(X) then it is rather difficult to describe the restriction of the
sheaf to Uo

K,Fet
.

We can overcome this as follows. Recall from [1, V, §7] (in particular [1,
V.7.4.1 (4)]) the following way of computing cohomology using hypercovers. Let S
be a site with representable finite products and fiber products and let S˜ be the
associated topos. Let HRS (or just HR if the reference to the site S is clear) denote
the homotopy category of hypercovers in S. This is the category whose objects
are hypercovers by objects of S of the initial object of the topos S˜ and whose
morphisms are homotopy classes of morphisms of hypercovers (see [1, V.7.3.1.6] for
the notion of a homotopy between two morphisms of hypercovers). By [1, V.7.3.2
(1)] the opposite category HRo is filtering (while the category of hypercovers before
passing to the homotopy category is not filtering). Let G be a presheaf of abelian
groups on S with associated sheaf Ga. For any hypercover U· of the initial object in
S ,̃ let G(U·) denote the complex obtained by evaluating G on each of the Un to get
a cosimplicial abelian group and then taking the total complex. Two homotopic
morphisms f, g : U ′· → U· induce the same map H∗(G(U ′· )) → H∗(G(U ′· )) and
hence one can form the limit

(6.7.1) lim−→
U·∈HR

H∗(G(U·)).

There is a natural morphism

(6.7.2) lim−→
U·∈HR

H∗(G(U·))→ H∗(S̃, Ga)

which by [1, 7.4.1 (4)] is an isomorphism, where sqk (resp. cosqk) denotes the
k-th skeleton (resp. coskeleton) functor. For a fixed q, one can do slightly bet-
ter. Namely, recall that for an integer k an object U· ∈ HR is k-truncated if the
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adjunction map

(6.7.3) U· → cosqksqkU·

is an isomorphism. We denote by HRk ⊂ HR the full subcategory of k-truncated
objects. By [1, V.7.3.2 (1)] the category HRo

k is also filtering, and by [1, 7.4.1 (3)]
the natural map

(6.7.4) lim−→
U·∈HRk

Hq(G(U·))→ Hq(S̃, F )

is an isomorphism for any k > q.

6.8. Now let S be as in 6.1. Let F be a presheaf on S such that for every
U ∈ Et(X) the restriction FU of F to Fet(Uo

K
) is a sheaf. Let νX : X o

K
→ Xet be

the morphism of topoi defined in 6.4. For any U ∈ Et(X) let S |U denote the site
of objects in S with a morphism to the object (U,Uo

K
). The topos associated to

S |U is the localized topos X o
K
|U . We also have the morphism of topoi

(6.8.1) εU : X o
K
|U → Uo

K,Fet
.

The map of presheaves F → F a induces a morphism FU → RεU∗F
a. Applying the

functor Hq(Uo
K,Fet

,−) we obtain a morphism

(6.8.2) Hq(Uo
K,Fet

, FU )→ Hq(X o
K
|U , F a).

This map is functorial in U , so if H q(F ) denotes the sheaf on Et(X) associated to
the presheaf

(6.8.3) U 7→ Hq(Uo
K,Fet

, FU )

we obtain a morphism of sheaves on Et(X)

(6.8.4) H q(F )→ RqνX∗F
a.

Proposition 6.9. The morphism 6.8.4 is an isomorphism.

Proof. The key point is the following lemma:

Lemma 6.10. Let U ∈ Et(X) and let (U ′· , N
′
· ) → (U,Uo

K
) be a k-truncated

hypercover in S . Then after replacing U by an étale cover W → U and (U ′· , N
′
· )→

(U,Uo
K

) by (U ′· ×U W,N
′
· ×U W )→ (W,W o

K
) there exists a morphism of k-truncated

hypercovers (U ′′· , N
′′
· )→ (U ′· , N

′
· ) over (U,Uo

K
) such that each N ′′

n is finite and étale
over Uo

K
.

Proof. By a standard limit argument, it suffices to consider the case when U
is the spectrum of a strictly henselian local ring (indeed the assumption that the hy-
percovers are k-truncated ensures that they are given by finitely many schemes and
maps, and hence if we prove the lemma over the strict henselization of a geometric
point x̄→ U we can “spread out” to get the lemma in some étale neighborhood of
x̄).

In this case any étale U–scheme Z → U decomposes canonically as Zg
∐
Zf ,

where Zf → U is finite étale and the inclusion Zf ↪→ Z reduces to an isomorphism
over the closed point of U . This decomposition is functorial in Z. Let U ′f· be the
simplicial U–scheme [n] 7→ U ′fn . The simplicial scheme U ′f· is again a hypercover
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of U . Indeed for any integer n ≥ 0 to verify that the morphism of finite étale
U–schemes

(6.10.1) U ′fn+1 → (cosqnsqnU
′f
· )n+1

is surjective, it suffices to check that it induces a surjection over the closed point of
U which follows from the fact that U ′· → U is a hypercover.

We claim that in this local case we can find a morphism (U ′′· , N
′′
· ) → (U ′· , N

′
· )

as in the lemma with U ′′· = U ′f· . We prove this stronger statement by induction on
k.

For the case k = 0, we have a commutative diagram

(6.10.2)

N ′
0

α−−−−→ Uo
K

t

y y
U ′0

β−−−−→ U,

where α and β are étale and surjective, and (U ′· , N
′
· ) → (U,Uo

K
) is obtained by

taking the 0-coskeletons of the horizontal arrows. Set N ′f
0 := N ′

0×U ′
0
U ′f0 . We then

obtain a commutative diagram mapping to 6.10.2

(6.10.3)

N ′f
0

αf

−−−−→ Uo
K

tf

y y
U ′f0

βf

−−−−→ U,

where the map N ′f
0 → U ′fo

0,K
induced by tf is finite and étale, and αf and βf are

étale surjections. Taking 0-coskeletons of the horizontal arrows in 6.10.3 we obtain
the desired hypercover in S mapping to (U ′· , N

′
· )→ (U,Uo

K
).

For the inductive step we assume the lemma holds for k and prove it for k+ 1.
By induction we can find a hypercover

(6.10.4) (cosqksqkU
′f
· , Z·)→ (U,Uo

K
)

and a commutative diagram over U

(6.10.5)

Z· −−−−→ cosqksqkN
′
·y y

cosqksqkU
′f
· −−−−→ cosqksqkU

′
· .

Set

(6.10.6) W := Nk+1 ×(cosqksqkN·)k+1 (cosqksqkZ·)k+1

so that there is a commutative diagram (whose top square is cartesian)

(6.10.7)

W
δ−−−−→ Nk+1

β̃

y yβ

(cosqksqkZ·)k+1
α−−−−→ (cosqksqkN·)k+1

σ

y y
(cosqksqkU

′f
· )k+1

γ−−−−→ (cosqksqkU·)k+1.
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The morphism

(6.10.8) σ′ : (cosqksqkZ·)k+1 → (cosqksqkU
′fo

·,K)k+1

induced by σ is finite and étale being an inverse limit of finite étale morphisms
6.3. It follows that (cosqksqkZ·)k+1 is proper over Uo

K
, and therefore the morphism

α is also finite and étale. Since the top square is cartesian we conclude that δ is
also finite étale. The morphism β̃ is surjective since β is surjective (since N· is a
hypercover).

Next set

(6.10.9) W̃ := U ′fk+1 ×(cosqksqkU ′f
· )k+1

W.

Since U ′f· is a hypercover of U , the morphism U ′fk+1 → (cosqksqkU
′f
· )k+1 is surjective

and finite. This implies that the map W̃ → W is also surjective and that W̃ is
finite over Uo

K
.

Let ∆k+1 ⊂ ∆ denote the full subcategory whose objects are {[s]|s ≤ k + 1}.
Define

(6.10.10) R : ∆o
k+1 → (Uo

K
-schemes)

as follows. For s < k + 1 set Rs := Zs, and set Rk+1 := W̃ . For a morphism
δ : [s]→ [k + 1] with s < k + 1 define δ∗ : Rk+1 → Rs to be the composite

(6.10.11) W̃ −−−−→ (cosqksqkZ·)k+1 −−−−→ Zs,

where the second morphism is the one given by the simplicial structure on cosqksqkZ·.
For a morphism δ : [k+ 1]→ [s] let δ∗ : Rs → Rk+1 = W̃ be the morphism defined
as follows. First the commutative diagram

(6.10.12)

Zs −−−−→ Ns∥∥∥ yδ

Zs Nk+1y y
(cosqksqkZ·)k+1 −−−−→ (cosqksqkN·)k+1

defines a morphism h : Zs →W . This morphisms sits in a commutative diagram

(6.10.13)

Zs −−−−→ Wy ∥∥∥
U ′fs W

δ

y y
U ′fk+1 −−−−→ (cosqksqkU

′f
· )k+1

and hence factors through a morphism δ∗ : Rs = Zs → W̃ = Rk+1. We leave to
the reader the verification that these definitions are compatible with compositions
of morphisms in ∆k+1. Since all the morphisms in the diagram

(6.10.14) W̃ −−−−→ W −−−−→ (cosqksqkZ·)k+1
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are surjections the truncated simplicial scheme R is a hypercover of Uo
K

. Further-
more we have a commutative diagram of truncated simplicial schemes

(6.10.15)

R −−−−→ N·y y
sqk+1U

′f
· −−−−→ U·.

Taking (k+1)-coskeletons we obtain the desired morphism of hypercovers in S . �

To deduce 6.9 from this, let s ∈ RqεX∗F
a be a section over some U ∈ Et(X).

After shrinking on U we can find a hypercover (U ′· , N
′
· ) → (U,Uo

K
) and a section

s̃ ∈ FU ′
q
(N ′

q) representing the class s. By 6.10, after further shrinking on U , we can
assume that each U ′n is finite étale over U . In this case N· is a hypercover of Uo

K
in Fet(Uo

K
) and therefore s̃ ∈ FU ′

q
(N ′

q) = FU (N ′
q) defines a class in Hq(Uo

K,Fet
, FU )

mapping to s. This shows that 6.8.4 is surjective.
For the injectivity of 6.8.4, consider U ∈ Et(X) and an element

(6.10.16) σ ∈ Hq(Uo
K,Fet

, FU )

mapping to zero in RqνX∗F
a. After shrinking on U , we can find an étale hyper-

cover N· → Uo
K

in Fet(Uo
K

), a section σ̃ ∈ FU (Nq) defining σ, and a morphism of
hypercovers in S

(6.10.17) (U ′· , N
′
· )→ (U,N·)

such that σ̃ maps to a boundary in FU ′
·
(N ′

· ). By 6.10, after shrinking on U we can
assume each U ′n is finite and étale over U . In this case N ′

· → N· is a morphism of
hypercovers in Uo

K,Fet
such that the image of σ̃ under the map FU (N·)→ FU (N ′

· ) is
a boundary. Therefore σ̃ defines the zero section of H q. This completes the proof
of 6.9. �

Corollary 6.11. With notation and assumptions as in 6.8, the natural map
(6.11.1)

lim−→
U·∈HREt(X)

H∗(Uo
·,K,Fet

, FU·)→ lim−→
U·∈HREt(X)

H∗(Uo
·,K,Fet

, RεU·∗F
a) ' H∗(X o

K
, F a).

is an isomorphism.

Proof. For any U· ∈ HREt(X) there is a canonical spectral sequence

(6.11.2) Epq
1 = Hq(Uo

p,K,Fet
, FUp

) =⇒ Hp+q(Uo
·,K,Fet

, FU·)

and similarly

(6.11.3) Epq
1 = Hq(Uo

p,K,Fet
, RεUp∗F

a) =⇒ Hp+q(Uo
·,K,Fet

, RεU·∗F
a),

and it follows from the construction that the morphism 6.11.1 is induced by a
morphism of spectral sequences from 6.11.2 to 6.11.3. The Epq

2 -term of 6.11.2
computes the p–th Cech cohomology of the presheaf

(6.11.4) U 7→ Hq(Uo
K,Fet

, FU ),

and the Epq
2 -term of 6.11.3 computes the p–th Cech cohomology of the presheaf

(6.11.5) U 7→ Hq(X o
K
|U , F a).

Proposition 6.9 therefore shows that the map from 6.11.2 to 6.11.3 induces an
isomorphism on E2-terms when passing to the limit over all U· ∈ HREt(X). �
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6.12. Let O denote the sheaf on S which to any (U,N) associates Γ(U,OU ).
Define OX o

K
to be the sheaf associated to the presheaf ÕX o

K
sending (U,N) to the

global sections of the normalization of U in N . Also define JX ⊂ OX o
K

to be the

sheaf of ideals associated to the presheaf J̃X which to any (U,N) associates the
ideal of the inverse image (with the reduced structure) of D in the normalization
N of UK in N .

If U = Spec(R) is an affine étale X-scheme admitting a morphism as in 2.16.1
and if ∆U denotes the fundamental group of Uo

K
with respect to a generic base

point, then the sheaf ÕX o
K

,U (resp. J̃X,U ) is the sheaf on Uo
K,Fet

corresponding to

the ∆U -representation R (resp. JX) defined in 3.7. From this, 4.7, and 3.17 we
conclude:

Corollary 6.13. For any r ≥ 1, the sheaves

RiνX∗OX o
K
/prOX o

K
, and RiνX∗JX/p

rJX

are almost isomorphic to quasi–coherent sheaves on Xet, are almost zero for i > d,
and there is a canonical trace morphism

(6.13.1) tr : RdνX∗JX/p
rJX → Ωd

X/V ⊗V (V /pr)(−d)

defined in Oa
X −Mod.

Corollary 6.14. Assume that X is smooth and proper over Spec(V ). Then
Hi(X o

K
,JX/p

rJX) is almost zero for i > 2d and there is a canonical trace mor-
phism defined in V

a −Mod

(6.14.1) tr : H2d(X o
K
,JX/p

rJX)→ V /prV (−d).

Proof. By the preceding corollary and standard facts about cohomology of
quasi–coherent sheaves, we obtain that Hi(X o

K
,JX/p

rJX) is almost zero for
i > 2d and that for i = 2d this group maps to Hd(X,Ωd ⊗ V /prV )(−d). By Serre
duality there is a canonical isomorphism

(6.14.2) Hd(X,Ωd ⊗ V /prV )(−d) ' H0(X ⊗ (V/pr),OX⊗V/pr )⊗ V (−d)

which implies the result. �

By the same argument one obtains the following:

Corollary 6.15. Assume that X is smooth and proper over Spec(V ). Let L
be a locally constant sheaf of free Z/prZ–modules on Xo

K
, let L∗ := H om(L,Z/pr)

denote its dual, and set L := uX∗L and L ∗ := uX∗L
∗.

(i) The sheaves RiνX∗(L ⊗OX o
K

) and RiνX∗(L ⊗JX) are almost isomorphic
to quasi–coherent sheaves on Xet, and are almost zero for i > d.

(ii) The map in D̃(OXV
)

RνX∗(L ⊗ OX o
K

)→ RH om(RνX∗(L ∗ ⊗JX),Ωd
X/V ⊗ V /p

r(−d))

induced by the trace map 6.13.1, is an isomorphism.
(iii) The trace map induces a canonical isomorphism in D̃(V )

(6.15.1) RΓ(X o
K
,L ⊗ OX o

K
)→ RHom(RΓ(X o

K
,L ∗ ⊗JX), V /prV (−d)[−2d]).
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Proof. Statement (i) follows from the same argument giving 6.13, and this
argument combined with 4.11 also gives (ii). For (iii), note that by Serre duality
and the fact that the complex RνX∗(L ∗⊗JX) is almost isomorphic to a bounded
complex with coherent cohomology sheaves, the canonical pairing

RHom(RνX∗(L ∗ ⊗JX),Ωd
X/V ⊗ V /p

r)⊗RΓRνX∗(L ∗ ⊗JX)→ V /prV

is perfect. Now by (ii) we have

RHom(RνX∗(L ∗ ⊗JX),Ωd
X/V ⊗ V /p

r) ' RΓ(L ⊗ OX o
K

)

which implies (iii). �

By 6.5, the natural map

(6.15.2) H∗(X o
K
,L )→ H∗(Xo

K,et
, L)

is an isomorphism. The map of sheaves L → L ⊗ OX o
K

therefore induces a map
on cohomology

(6.15.3) H∗(Xo
K,et

, L)⊗ V → H∗(X o
K
,L ⊗ OX o

K
).

The following theorem will be proven in section 8:

Theorem 6.16. The morphism 6.15.3 is an isomorphism. In addition there is
a canonical almost isomorphism

(6.16.1) H∗
c (Xo

K,et
, L)⊗ V ' H∗(X o

K
,L ⊗JX),

and these isomorphisms are compatible with the pairing 6.15.1 and the usual Poincaré
duality for étale cohomology.

6.17. The isomorphism 6.15.1 can also be generalized to a statement with par-
tial compact supports (this generalization is in fact crucial for the proof). Suppose
given a decomposition D = E ∪F , where E and F are divisors on X with no com-
mon irreducible component. Define JE ⊂ OX o

K
to be the sheaf of ideals which to

any (U,N) ∈ S associates the ideal of (E×XN)red ⊂ N , where N denotes the nor-
malization of UK in N . Note that multiplication induces a map JE ⊗JF →JX

and hence using Poincaré duality we obtain for any locally constant sheaf of Z/pr-
modules L a map

(6.17.1) RΓ(X o
K
,L ⊗JE)→ RHom(RΓ(X o

K
,L ∗ ⊗JF ), V /prV (−d)[−2d]).

By the same argument used to prove 6.15 (iii) this map is an isomorphism.

7. Computing compactly supported cohomology using Galois
cohomology

Before proving 6.16, we make in this section some general comments about
how to compute compactly supported cohomology using Galois cohomology. These
observations will only be used in the proof of 6.16 and can be omitted by the reader
who skips this proof.

Throughout this section Λ denotes the ring Z/pn for some n, and we consider
Λ-modules unless otherwise stated.
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7.1. Let Y be a smooth K–scheme, D = D1 ∪ · · · ∪Dn a divisor with simple
normal crossings on Y , let A ⊂ {1, . . . , n} be a subset, and let DA ⊂ Y denote the
intersection ∩a∈ADA. Let Do

A denote the complement in DA of ∪i/∈A(Di ∩ DA),
and let jA : Do

A ↪→ Y and j : Y o ↪→ Y be the inclusions. Assume that Y = Spec(R)
is affine, and that each Do

A is a K(π, 1). We will further assume that the exists a
formally étale morphism

(7.1.1) Y → Spec(K[X1, . . . , Xd])

for some d ≥ 0 such that D is equal to the inverse image of X1 · · ·Xn = 0 for some
n ≤ d.

7.2. We will also sometimes consider the following additional assumption (but
will always state explicitly when we assume it):

(R): For every nonempty A ⊂ {1, . . . , n} there exists a retraction of the inclu-
sion DA ↪→ Y

(7.2.1) rA : Y → DA

such that the inverse image of Do
A contains Y o.

Example 7.3. The relevance of condition (R) for our purposes is the fol-
lowing. Let X/V be a smooth proper scheme with D ⊂ X a divisor with sim-
ple normal crossings relative to V , and let x̄ → X be a geometric point. Then
Y := Spec(OX,x̄ ⊗V K) with the pullback of the divisor D satisfies condition (R).

7.4. For a finite étale morphism Zo → Y o, let Z → Y be the normalization of Y
in Zo, and let Zo

A ⊂ Z denote the maximal reduced closed subscheme of Do
A×Y Z.

We then have inclusions

(7.4.1) Zo
A

jZ
A−−−−→ Z

jZ

←−−−− Zo.

Lemma 7.5. The morphism Zo
A → Do

A is finite and étale.

Proof. The assertion is étale local on Y so it suffices to consider the case
when Y is the spectrum of a strictly henselian local ring. In this case the result
follows from Abhyankar’s lemma [25, Appendice 1, 5.2]. �

Lemma 7.6. For any locally constant constructible sheaf of Λ–modules L on Y o

and ν ≥ 0 the sheaf j∗AR
νj∗L is locally constant constructible sheaf on Do

A.

Proof. If f : Y ′o → Y o is a finite étale morphism, then f∗Λ is a locally
constant constructible sheaf of Λ–modules on Y o. Furthermore, for any locally
constant constructible sheaf L on Y o there exists a finite étale covering f : Y ′o → Y o

such that f∗L is trivial. If we fix an isomorphism f∗L ' Λr for some r then the
adjunction map L → f∗Λr is an inclusion. From this one deduces that for any
locally constant constructible sheaf of Λ–modules L on Y o, there exists a resolution
L→ K• in the category of locally constant constructible sheaves of Λ–modules on
Y o such that each Kn is a direct sum of sheaves of the form f∗Λ for some finite
étale morphisms f : Y ′o → Y o. The spectral sequence corresponding to the “stupid
filtration” on K• yields

(7.6.1) Epq
1 = Rqj∗K

p =⇒ Rp+qj∗L.

From this it follows that it suffices to prove the lemma for L = f∗Λ for some finite
étale surjection f : Y ′o → Y o.
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In this case, let f̄ : Y ′ → Y be the normalization of Y in Y ′o, and let D′o
A (resp.

D′
A) denote the maximal reduced subscheme of Y ′×Y D

o
A (resp. Y ′×Y DA) so that

we have

(7.6.2)

Y ′o
j′−−−−→ Y ′

j′A←−−−− D′o
A

f

y yf̄

yg

Y o j−−−−→ Y
jA←−−−− Do

A.

As in 7.5, the subscheme D′
A ⊂ Y ′ is a divisor with normal crossings. We then have

j∗AR
νj∗L = j∗AR

νj∗(f∗Λ)
' j∗AR

νj∗(Rf∗Λ)
' j∗AR

ν f̄∗(Rj′∗Λ)
' g∗j

′∗
AR

νj′∗Λ,

where the last isomorphism is by the proper base change theorem (note that the
right square in 7.6.2 is not cartesian but that D′

A → Y ′×Y DA is a closed immersion
defined by a nilpotent ideal so that étale cohomology of a sheaf on Y ′ ×Y DA is
equal to the étale cohomology of its pullback to D′

A). It follows that it suffices to
prove that j′∗AR

νj′∗Λ is locally constant constructible on D′o
A . This further reduces

the proof to the case when L = Λ.
So let us finally prove the result for L = Λ. By replacing Y by Y −∪i/∈ADi we

may assume that in fact A = {1, . . . , n}. Furthermore, the assertion is evidently
étale local on Y so we may assume that there is a smooth map

(7.6.3) π : Y → Spec(K[T1, . . . , Tn])

such that Di is the inverse image of the zero locus of Ti so that DA = π−1(0). This
morphism π defines a morphism

(7.6.4) Hν(Gn
m,Λ)→ j∗AR

νj∗Λ

which we claim is an isomorphism. To prove this we may replace Y by Spec(OY,ȳ)
for a geometric point ȳ → DA. In this case Y o is aK(π, 1) by 5.10 with fundamental
group Z(1)n so (j∗AR

νj∗Λ)ȳ is isomorphic to the group cohomology Hν(Z(1)n, L).
On the other hand, using Künneth and the fact that Gm is a K(π, 1) one sees that
Hν(Gn

m,Λ) is also isomorphic to Hν(Z(1)n,Λ) and under these identifications the
map 7.6.4 is the identity map. �

7.7. Fix a geometric generic point Spec(Ω)→ Y , and let R ⊂ Ω be the integral
closure of R in the compositum of all field extensions k(Y ) ⊂ L ⊂ Ω for which the
normalization of R in L is étale over Y o. Let ∆ denote the étale fundamental group
of Y o with respect to the chosen base point so that ∆ acts on Spec(R).

Let A ⊂ {1, . . . , n} be a subset and let η̄ → Do
A be a geometric generic point.

For any choice of lifting η̄ → Spec(R) we obtain a decomposition group HA ⊂ ∆
defined to be the subgroup of elements fixing the image of η̄. The subgroup HA ⊂ ∆
is closed. Let RA be the quotient of R by the prime ideal corresponding to the image
of η̄. Then Spec(RA) → Do

A is an inverse limit of finite étale morphisms, and HA

acts on the inverse limit. Let IA ⊂ HA denote the subgroup of elements which act
trivially on RA (the inertia group). If ∆A denotes the étale fundamental group of
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Do
A with respect to the base point η̄, then the action of HA/IA on RA defines a

surjection

(7.7.1) ∆A → HA/IA.

Lemma 7.8. If condition (R) holds, then the homomorphism 7.7.1 is an iso-
morphism.

Proof. It suffices to show that any finite set with continuous ∆A-action is
obtained by pullback from a set with continous HA/IA-action. This is clear for if S
is a set with continuous ∆A–action corresponding to an étale morphism V → Do

A,
then r∗AV → Y o is an étale morphism, and the corresponding HA/IA-set pulls back
to S. �

7.9. In terms of Galois representations, the sheaf j∗Aj∗L can be described as
follows. Let M be the ∆–representation corresponding to L. Then j∗Aj∗L is the
sheaf corresponding to the representation of ∆A acting on M IA via the surjection
∆A → HA/IA. This implies in particular the following:

Corollary 7.10. Let A ⊂ B ⊂ {1, . . . , n} so that DB ⊂ DA. Then for
any locally constant constructible sheaf of Λ–modules L on Y o the natural map
j∗Bj∗L→ j∗BjA∗j

∗
Aj∗L is an isomorphism.

7.11. Let L be a locally constant sheaf of abelian groups on Y o
Fet. For A ⊂

{1, . . . , n} define a presheaf ψA(L) on Fet(Y o) by

(7.11.1) (Zo → Y o) 7→ Γ(Zo
A, j

Z∗
A jZ

∗ (L|Zo)).

In terms of Galois representations the presheaf ψA(L) can be described as
follows. Let M be the ∆–representation corresponding to L, and let HA ⊂ ∆ be
the decomposition group of DA obtained by making suitable choices as in 7.7. Then
we claim that ψA(L) is the sheaf corresponding to the ∆–representation

(7.11.2) Ind∆
HA

(M |HA
) := Homcts

HA
(∆,M |HA

).

Here Ind∆
HA

(−) is the right adjoint to the restriction functor from ∆-modules to
HA-modules.

To see this let Zo → Y o be a finite étale morphism corresponding to a ∆–set
S. The restriction of S to HA decomposes into HA-orbits

(7.11.3) S|HA
=

∐
i

Si.

For each i let Hi ⊂ HA denote the kernel of the map HA → Aut(Si). We then have

Hom∆(S, Ind∆
HA

(M |HA
)) ' HomHA

(S,M)

'
∏

i

HomHA
(Si,M)

'
∏

i

MHi

' Γ(Zo
A, j

Z∗
A jZ

∗ L).

Corollary 7.12. The presheaf ψA(L) is a sheaf on Y o
Fet.

Corollary 7.13. The functor ψA(−) is an exact functor on the category of
sheaves on Y o

Fet.
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Proof. This is because Ind∆
HA

(−) is an exact functor (this follows immediately
from the definition). �

Lemma 7.14. Let ∆ be a profinite group and D ⊂ ∆ a closed subgroup.
(i) Any injective ∆–representation I is a direct summand of an induced module

Ind∆
D(N) with N an injective D–representation.
(ii) For any injective ∆–representation I and i > 0 the group Hi(D, I|D) is

zero.

Proof. Let Ĩ denote the restriction of I to D and choose an inclusion Ĩ ↪→
N with N an injective D-representation. The adjunction map I → Ind∆

D(Ĩ) →
Ind∆

D(N) is then injective. Since I is injective this inclusion I ↪→ Ind∆
D(N) is split

which proves (i).
For (ii) note first that by (i) applied to the inclusion of the trivial group into ∆,

it suffices to consider the case of I = Ind∆(N) (induction for the trivial subgroup
{e} ↪→ ∆) for some injective abelian group N . Let Kn ⊂ ∆ be a decreasing
system of closed subgroups of finite index defining a base for the topology so that
∆ = lim←−∆/Kn and D = lim←−n

D/(D ∩ Kn) (note since D is closed in ∆ such a
system of subgroups Kn exists). We then have

Hi(D, I|D) = lim−→
n

Hi(D/(D ∩Kn),Homcts(∆, N)D∩Kn)

= lim−→
n

lim−→
m

Hi(D/(D ∩Kn),Hom(∆/Km, N)D∩Kn).

We can write this double limit as the single limit

(7.14.1) lim−→
n

Hi(D/(D ∩Kn),Hom(∆/Kn, N)).

The D–module Hom(∆/Kn, N) is a direct sum of modules Hom(D/(D ∩Kn), N)
which is injective in the category of D/(D∩Kn)–modules. From this it follows that
the higher cohomology groups are zero. �

Corollary 7.15. Let M be an injective object in the category of continuous
representations of ∆ on Λ-modules. Then the underlying Λ-module of M is flat.

Proof. Taking D = {1} in 7.14 we see that M is a direct summand of
Ind∆

{1}(N) for some injective Λ-module N . Therefore it suffices to show that any
injective Λ-module is flat over Λ. This is a standard consequence of the fact that
Λ is Gorenstein of dimension 0, which implies that Λ is injective as a Λ-module
(see for example [12, §21.2]). For the convenience of the reader let us recall the
argument. It suffices to show that for any nonzero element m ∈M there exists an
inclusion i : Λ ↪→M such that i(Λ) contains m. For since Λ is injective such an in-
clusion i is split so this will show that M is isomorphic to filtered colimit of finitely
generated free Λ-modules, and hence flat. Since M is a Λ-module there exists a
minimal integer s such that psm = 0, and this gives an inclusion j : Z/(ps) ↪→ M
sending 1 to m. Since M is injective there exists a dotted arrow g filling in the
diagram

0 // Z/(ps)

j

��

1 7→pn−s

// Λ
g

||y
y

y
y

y

M.
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Because j is an inclusion the map g is also an inclusion, since by construction g(1)
has exact order pn. �

Lemma 7.16. With notation as in 7.7, let M be an injective representation of
∆. Then

(i)

(7.16.1) Hi(HA,M |HA
) = 0

for any i > 0, and H0(HA,M |HA
) = H0(∆A,M

IA).
(ii) If in addition condition (R) holds then for any i > 0 we have

(7.16.2) Hi(∆A,M
IA) = 0.

Proof. Since HA ⊂ ∆ is closed the vanishing of Hi(HA,M |HA
) follows from

7.14. The statement about H0 is immediate.
For the vanishing of Hi(∆A,M

IA) in the case when (R) holds, note that the
short exact sequence

(7.16.3) 1→ IA → HA → ∆A → 1

induces a spectral sequence

(7.16.4) Epq
2 = Hp(∆A,H

q(IA,M)) =⇒ Hp+q(HA,M).

Since IA ⊂ ∆ is also closed we have Hq(IA,M) = 0 for q > 0 by 7.14, and therefore
there is a canonical isomorphism

(7.16.5) Hp(∆A,M
IA) ' Hp(HA,M).

From this (ii) follows. �

We can in fact sharpen the above lemma as follows.

Lemma 7.17. Let ∆ be a profinite group. A filtering direct limit of injective
continuous ∆–representations is an injective continuous ∆–representation.

Proof. Let I = lim−→ Iλ with each Iλ an injective ∆-representation. Consider
an inclusion of ∆–representations N ↪→M and a map ρ : N → I. We need to show
that ρ extends to a morphism M → I. For this write M = lim−→Mk with each Mk

a finitely presented abelian group with continuous ∆–action (this is possible since
the action is continuous). Let Nk denote N ∩Mk. We then inductively extend the
maps ρk : Nk → I obtained from ρ.

For this fix some k0. The map Nk0 → I factors through some Iλ since Nk0 is
finitely presented and therefore there exists an extension ρ̃k0 : Mk0 → I.

Now assume that ρ̃k : Mk → I has been constructed. By the definition of Nk

the map

(7.17.1) Nk+1 ⊕Nk
Mk →Mk+1

is injective. Using the above argument applied to the map

(7.17.2) ρk+1 ⊕ ρ̃k : Nk+1 ⊕Nk
Mk → I

we then obtain the extension ρ̃k+1. �

Lemma 7.18. Let ∆ be a profinite group and let D ⊂ ∆ be a closed subgroup.
If M is an injective ∆–representation then M |D is an injective D–representation.
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Proof. Write ∆ = lim←−∆/Kn and set Sn = ∆/(D,Kn). Then the set of cosets
S := ∆/D is equal to lim←−Sn (and in particular has the profinite topology). Choose
a continuous section σ of the projection ∆ → ∆/D. Then for any continuous
D–representation N we have an isomorphism of D–representations

(7.18.1) Homcts
D (∆, N)|D → Homcts(S,N), (f : ∆→ N) 7→ (s 7→ f(σ(s))).

Since

(7.18.2) Homcts(S,N) = lim−→
n

Hom(Sn, N)

this, together with 7.17, proves the result in the case when M = Ind∆
D(N) for

some injective D–representation N . For the general case, note that by 7.14 any
injective M is a direct summand of a representation Ind∆

D(N) with N an injective
D–representation. �

Lemma 7.19. Let ∆ be a profinite group and let D ⊂ ∆ be a closed subgroup.
Assume that D ⊂ ∆ is normal, and let G be the quotient. If M is an injective
∆–representation, then MD is an injective G–representation.

Proof. Immediate since the functor M 7→ MD takes injectives to injectives.
�

Corollary 7.20. Let ∆ be a profinite group, let D1, D2 ⊂ ∆ be two closed
subgroups, and let M be an injective ∆–representation. Then for any i > 0 we have

(7.20.1) Hi(D2, Ind∆
D1

(M |D1)|D2) = 0.

7.21. Let L be a locally constant sheaf of abelian groups on Y o
et. Define a

complex of sheaves Ψ(L) on Et(Y ) as follows. For r ≥ 0 set

(7.21.1) Ψ(L)r := ⊕A⊂{1,...,n},|A|=rjA∗j
∗
Aj∗L.

For 1 ≤ j ≤ r and A = {i1 < i2 < · · · < ir} ⊂ {1, . . . , n} let Aj denote the set
{i1, i2, . . . , îj , ij+1, . . . , ir} so that Aj ⊂ A. Using 7.10 we then have a map

(7.21.2) ∂j : jAj∗j
∗
Aj
j∗L→ jA∗j

∗
AjAj∗j

∗
Aj
j∗L ' jA∗j∗Aj∗L.

Taking the sum of these maps we get a morphism

(7.21.3) ∂j : Ψ(L)r−1 → Ψ(L)r.

Define

(7.21.4) ∂ : Ψ(L)r−1 → Ψ(L)r

to be the alternating sum
∑r+1

j=1(−1)j∂j . One verifies immediately that ∂2 = 0 so
we get a complex Ψ(L) of sheaves on Et(Y ).

We have Ψ(L)0 = j∗L and the composite

(7.21.5) j!L −−−−→ j∗L = Ψ(L)0 ∂−−−−→ Ψ(L)1

is zero.

Lemma 7.22. The map of complexes of sheaves

(7.22.1) j!L→ Ψ(L)

is a quasi-isomorphism.
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Proof. It suffices to show that for any geometric point ȳ → Y the map of
complexes of abelian groups

(7.22.2) (j!L)ȳ → Ψ(L)ȳ

is a quasi–isomorphism. If ȳ maps to Y o this is immediate. If the image of ȳ is
in the boundary, the ring OY,ȳ is isomorphic to the strict henselization of the ring
K[X1, . . . , Xd] at the origin and D is the zero locus of X1 · · ·Xr for some r ≤ d.
In this case the fundamental group ∆ of Spec(OY,ȳ)o is isomorphic to Z(1)r. If
M denotes the representation of ∆ corresponding to L, then it follows from the
construction that Ψ(L)ȳ is isomorphic to the complex

(7.22.3) M∆ ⊗ (Z→ ⊕1≤i≤rZ→ ⊕1≤i1<i2≤rZ→ · · · ),

where
⊕1≤i≤rZ→ ⊕1≤i1<i2≤rZ→ · · ·

is the acyclic complex computing the Cech cohomology of Spec(Z) with respect to
the covering

r∐
i=1

Spec(Z)→ Spec(Z).

�

Lemma 7.23. Let L be an injective Λ–module in Y o
Fet. For any subset A ⊂

{1, . . . , n} the natural map jA∗j∗Aj∗L→ RjA∗j
∗
Aj∗L is an isomorphism.

Proof. Let ȳ → Y be a geometric point, and let Ỹ denote Spec(OY,ȳ). Then
it suffices to show that for any ν > 0 we have

(7.23.1) Hν(Ỹ o
A, j

∗
Aj∗L) = 0.

The existence of the map 7.1.1 ensures that the morphism of fundamental groups
π1(Ỹ o) → π1(Y o) (obtained by choosing suitable base points) is injective. Using
7.18 this implies that it suffices to prove the lemma with Y replaced by Ỹ . In
this case j∗Aj∗L is given by an injective representation of π1(Y o

A) which implies the
lemma. �

Lemma 7.24. Let L be an injective Λ-module in Y o
Fet and assume condition (R)

holds. Then for any i > 0 and any integer r the group Hi(Yet,Ψ(L)r) is zero.

Proof. For any A ⊂ {1, . . . , n} of size r we have by 7.23

(7.24.1) Hi(Yet, jA∗j
∗
Aj∗L) = Hi(Do

A,et, j
∗
Aj∗L),

which since Do
A is a K(π, 1) and j∗Aj∗L is locally constant is isomorphic to

(7.24.2) Hi(Do
A,Fet, j

∗
Aj∗L).

In the notation of 7.7, if M is the ∆-representation corresponding to L we then
want

(7.24.3) Hi(∆A,M
IA) = 0

for i > 0. This follows from 7.16. �
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7.25. It follows that for a locally constant constructible sheaf L of Λ–modules
on Y o, we can compute H∗(Yet, j!L) as follows. Choose an injective resolution
L→ I• in the category of Λ–modules in Y o

Fet, and let Ψ(I•) be the complex on Yet

obtained by taking the total complex of the double complex obtained by applying
Ψ(−) to each Ip. We then have a commutative diagram

(7.25.1)

j!L
a−−−−→ j!I

•

b

y yc

Ψ(L) d−−−−→ Ψ(I•).

Since j! is an exact functor the morphism a is a quasi–isomorphism, and b and c
are quasi-isomorphisms by 7.22. It follows that d is also a quasi-isomorphism. We
then have a map

(7.25.2) Γ(Yet,Ψ(I•))→ RΓ(Yet, j!L)

which by 7.24 is an isomorphism if (R) holds.

7.26. For a sheaf of Λ–modules L in Y o
Fet we can also define a complex Ψ(L) in

Y o
Fet as follows. We define

(7.26.1) Ψ(L)r := ⊕A⊂{1,...,n},|A|=rψA(L),

where ψA(L) is defined as in 7.11.
If A ⊂ B ⊂ {1, . . . , n}, then there is a natural map

(7.26.2) ψA(L)→ ψB(L).

Indeed for any Zo → Y o with inclusions

(7.26.3) jZ : Zo ↪→ Z, jZ
A : Zo

A ↪→ Z etc.

we have a map
(7.26.4)
ψA(L)(Zo) = jZ

A∗j
Z∗
A jZ

∗ L(Z)→ j∗Bj
Z
A∗j

Z∗
A jZ

∗ L(Zo
B) = jZ∗

B jZ
∗ L(Zo

B) = ψB(L)(Zo),

where the second to last isomorphism is by 7.10. Taking the alternating sum as in
7.21 we obtain a map

(7.26.5) Ψ(L)r−1 → Ψ(L)r,

and we write Ψ(L)• for the resulting complex of sheaves on Y o
Fet.

We can compute RΓ(Y o
Fet,Ψ(L)•) as follows. Let L → I• be an injective res-

olution in the category of Λ–modules in Y o
Fet, and let Ψ(I•) be the total complex

of the double complex obtained by applying Ψ(−) to each Ip. By 7.13 the functor
Ψ(−)r is exact, so we have a quasi-isomorphism

(7.26.6) Ψ(L)• → Ψ(I•).

On the other hand, it follows from 7.16 that for any integer i > 0 we have
Hi(Y o

Fet,Ψ(I•)r) = 0. Therefore we obtain an isomorphism

(7.26.7) RΓ(Y o
Fet,Ψ(I•)) ' Γ(Y o

Fet,Ψ(I•)),

and hence also an isomorphism

(7.26.8) RΓ(Y o
Fet,Ψ(L)) ' Γ(Y o

Fet,Ψ(I•)).
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Now observe that by the definition of the sheaves ψA(L) we have

(7.26.9) Γ(Y o
Fet, ψA(Ip)) = Γ(Do

A, j
∗
Aj∗I

p).

It follows that

(7.26.10) Γ(Y o
Fet,Ψ(I•)) = Γ(Yet,Ψ(I•)).

Combining 7.25.2 and 7.26.8 we obtain the following:

Theorem 7.27. For any locally constant constructible sheaf L in Y o
Fet, there is

a canonical morphism

(7.27.1) RΓ(Y o
Fet,Ψ(L))→ RΓ(Yet, j!L),

which is an isomorphism if condition (R) holds.

Remark 7.28. In the above we have chosen an injective resolution of L. One
verifies immediately that the morphism in 7.27 does not depend on this choice.

Remark 7.29. The preceding constructions are compatible with finite étale
base change Y ′ → Y . In particular, if a : Y o

Fet → YFet and b : Yet → YFet are
the natural morphisms of topoi, then Ψ(I•) (resp. Ψ(I•)) is a complex of sheaves
acyclic for a∗ (resp. b∗) and there is a canonical isomorphism

(7.29.1) a∗Ψ(I•) ' b∗Ψ(I•)

which induces the morphism 7.27.1 by applying RΓ.

7.30. Let i : Z ⊂ Y be a smooth divisor meeting D transversally, and let
Zo denote Z ×Y Y o. Assume that Zo is a K(π, 1) and that there is a retraction
r : Y o → Zo of the inclusion Zo ↪→ Y o. Then for any geometric point ȳ → Zo

the identity map on π1(Zo, ȳ) factors through the map π1(Zo, ȳ) → π1(Y o, ȳ). In
particular, the map π1(Zo, ȳ)→ π1(Y o, ȳ) is injective and identifies π1(Zo, ȳ) with
a closed subgroup of π1(Y o, ȳ).

Corollary 7.31. Let L be an injective sheaf on Y o
Fet and assume condition

(R) holds. Then for any A ⊂ {1, . . . , n} the sheaf i∗ΨA(L) on Zo
Fet is acyclic for

the global section functor.

Proof. If ∆ denotes the fundamental group of Y o and ∆Z the fundamental
group of Zo then we have an inclusion ∆Z ⊂ ∆ (well–defined up to conjugation).
We also have the decomposition group HA ⊂ ∆ (also well–defined up to conjuga-
tion) and ifM is the representation of ∆ corresponding to L then ψA(L) corresponds
to the representation Ind∆

HA
(M). The corollary therefore follows from 7.20. �

Corollary 7.32. Let L be an injective sheaf on Y o
Fet and assume condition

(R) holds. Then for any subset A ⊂ {1, . . . , n} the sheaf j∗Aj∗L corresponds to a
injective representation of π1(Do

A).

Proof. Let ∆ denote the fundamental group of Y o, let HA ⊂ ∆ denote the
decomposition group, and let IA ⊂ HA be the inertia group. We then have HA/IA
isomorphic to the fundamental group of Do

A. If M is the ∆-representation corre-
sponding to L, then j∗Aj∗L corresponds to the representation (M |HA

)IA of HA/IA.
By 7.18 the HA–representation M |HA

is injective, and therefore the corollary fol-
lows from 7.19. �
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8. Proof of 6.16

Let Λ denote the ring Z/pn for some n.

8.1. Note first the if Y is another smooth proper V –scheme with a divisor
DY ⊂ Y with relative normal crossings, and if f : Y → X is a proper morphism
such that f−1(DX) ⊂ DY , then there is an induced morphism of topoi

(8.1.1) f : Y o
K
→X o

K

such that the diagram

(8.1.2)

Y o
K,et

uY−−−−→ Y o
K

f

y yf

Xo
K,et

uX−−−−→ X o
K

commutes.

8.2. We use this to reduce the proof of 6.16 to the case when D has simple
normal crossings as follows. By [33, 4.2.12] there exists a blow-up f : Y → X with
support in D such that Y/V is smooth, DY := f−1(D) is a divisor with simple
normal crossings on Y and the induced morphism of log schemes f : (Y,MY ) →
(X,MX) is log étale. This last observation implies that f∗Ω1

(X,MX)/V ' Ω1
(Y,MY )/V .

The morphism 8.1.1 induces morphisms

(8.2.1) H∗(X o
K
,L ⊗ OX o

K
)→ H∗(Y o

K
, f∗L ⊗ OY o

K
)

and

(8.2.2) H∗(X o
K
,L ∗ ⊗JX)→ H∗(Y o

K
, f∗L ∗ ⊗JY ).

We claim that 8.2.1 and 8.2.2 are monomorphisms in V
a −Mod.

This follows from noting that by construction of the trace map, the diagrams

RΓ(X o
K
,L ⊗ OX o

K
) (6.17.1) //

f∗

��

RHom(RΓ(X o
K
,L ∗ ⊗JX), V /prV (−d)[−2d])

RΓ(Y o
K
, f∗L ⊗ OY o

K
) (6.17.1)// RHom(RΓ(Y o

K
, f∗L ∗ ⊗JY ), V /prV (−d)[−2d])

f∗

OO

and

RΓ(X o
K
,L ⊗JX o

K
) (6.17.1) //

f∗

��

RHom(RΓ(X o
K
,L ∗ ⊗ OX), V /prV (−d)[−2d])

RΓ(Y o
K
,L ⊗JY o

K
) (6.17.1)// RHom(RΓ(Y o

K
, f∗L ∗ ⊗ OY ), V /prV (−d)[−2d])

f∗

OO

commute.
In particular, to prove 6.16 it suffices to show that the composite morphism

(8.2.3) H∗(Xo
K
, L)→ H∗(X o

K
,L ⊗ OX o

K
)→ H∗(Y o

K
, f∗L ⊗ OY o

K
)

is an isomorphism.
We may therefore assume that the divisorD has simple normal crossings. Write

D = D1 ∪ · · · ∪ Dn with each Di ⊂ X a smooth irreducible divisor. For a subset
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A ⊂ {1, . . . , n} we write DA for the intersection ∩a∈ADa. If A = ∅ then DA denotes
X.

8.3. Let S denote the site defining X o
K

. For an abelian sheaf L in X o
K

define
a complex of presheaves Ψ(L ) on S by associating to any U ∈ Et(X) the complex
of sheaves Ψ(LU ) on Uo

K,Fet
obtained by applying the construction in 7.26 to the

sheaf LU in Uo
K,Fet

. We denote by Ψa(L ) the associated complex of sheaves in
X o

K
.
More generally if L • is a bounded below complex of abelian sheaves in X o

K
we define Ψ(L •) to be the total complex of the bicomplex obtained by applying
Ψ(−) to each component of L •. Passing to the associated sheaves we also define
Ψa(L •). It follows from 7.13 that if L • →M • is a quasi-isomorphism, then the
induced morphism

(8.3.1) Ψa(L •)→ Ψa(M •)

is also a quasi-isomorphism.

8.4. Let L be a locally constant constructible sheaf of Λ–modules in Xo
K,et

, and
let L := uX∗L denote the induced sheaf in X o

K
. Let HR(X)′ ⊂ HR(X) be the

full subcategory of hypercoverings U· → X such that for every n the scheme Un,K

satisfies the assumptions of 7.1. It follows from 5.11 that the subcategory HR(X)′

is cofinal in HR(X).
Let L → I• be an injective resolution in X o

K
. For U· ∈ HR(X)′ let

(8.4.1) εU· : X o
K
→ Uo

·,K,Fet

be the projection.

Lemma 8.5. For every n the map

(8.5.1) L|Uo
n,K,Fet

= εUn∗L → εUn∗I
•

is a quasi–isomorphism. Consequently, L|Uo
·,K,Fet

→ εU·∗I
• is an injective resolution

in the category of Λ–modules in the simplicial topos Uo
·,K,Fet

.

Proof. By 6.5 the natural map L → RuX∗L is an isomorphism. It follows
that if π : Uo

n,K,et
→ Uo

n,K,Fet
is the projection then the right side of 8.5.1 computes

Rπ∗L. The result then follows from the fact that Uo
n,K

is a K(π, 1). �

8.6. We can also apply the Ψ(−)–construction in 7.21 to the simplicial sheaves
L|Uo

·,K,Fet
and εU·∗I

•. This gives complexes of sheaves ΨU·(L) and Ψ(εU∗I•) on
UK,et and a commutative diagram of quasi-isomorphisms

(8.6.1)

j!L|U· −−−−→ j!(εU∗I•)y y
ΨU·(L) −−−−→ Ψ(εU∗I•).

In particular we have

(8.6.2) RΓ(U·,K,et, j!L|U·,K ) ' RΓ(U·,K,et,Ψ(εU∗I•)).

There is a canonical map

(8.6.3) Γ(U·,K,et,Ψ(εU∗I•))→ RΓ(U·,K,et,Ψ(εU∗I•))
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Lemma 8.7. The map
(8.7.1)
hocolimU·∈HR(X)′Γ(U·,K,et,Ψ(εU∗I•))→ hocolimU·∈HR(X)′RΓ(U·,K,et,Ψ(εU∗I•))

induced by 8.6.3 is an isomorphism.

Proof. Write just Ψ(I•) for Ψ(εU∗I•). The map on cohomology obtained from
8.7.1 extends to a map of spectral sequences from

(8.7.2) Epq
1 = lim−→

U·

Hq(Γ(Up,K ,Ψ(I•))) =⇒ lim−→
U·

Hp+q(Γ(U·,K ,Ψ(I•)))

to

(8.7.3) Epq
1 = lim−→

U·

Hq(Up,K ,Ψ(I•)) =⇒ lim−→
U·

Hp+q(U·,K ,Ψ(I•)).

It follows that it suffices to show that for every (p, q) the map

(8.7.4) lim−→
U·

Hq(Γ(Up,K ,Ψ(I•)))→ lim−→
U·

Hq(Up,K ,Ψ(I•))

is an isomorphism. For this in turn it suffices to show that for every (p, q) with
q > 0 and j, r ∈ Z we have

(8.7.5) lim−→
U·

Hq(Up,K ,Ψ(Ij)r) = 0.

To verify this it suffices by a standard limit argument to consider the case of the
strict henselization of X at a point. In this case condition (R) in 7.2 holds so the
result follows from 7.24. �

8.8. By 7.26.10 we also have

(8.8.1) Γ(U·,K,et,Ψ(εU∗I•)) = Γ(Uo
·,K,Fet

,Ψ(εU∗I•))

We then have

RΓ(X o
K
,Ψa(L )) = RΓ(X o

K
,Ψa(I•)) (by exactness of Ψa)

= hocolimU·∈HR(X)′RΓ(Uo
·,K,Fet

,Ψ(εU·∗I
•)) (by 6.11)

= hocolimU·∈HR(X)′Γ(Uo
·,K,Fet

,Ψ(εU·∗I
•)) (by 7.26.7)

= hocolimU·∈HR(X)′Γ(U·,K,et,Ψ(εU·∗I
•)) (by 8.8.1)

= hocolimU·∈HR(X)′RΓ(U·,K,et, j!L|UK
) (by 8.7 and 8.6.2)

= RΓ(XK , j!L).

Summarizing:

Theorem 8.9. There is a canonical isomorphism

H∗
c (Xo

K
, L) ' H∗(X o

K
,Ψa(L ))

functorial in L.

Remark 8.10. In the above we have chosen the injective resolution L → I•.
A standard verification shows that the isomorphism in 8.9 is independent of this
choice.
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8.11. In fact this isomorphism is even compatible with cup products. Let L
be the sheaf on X o

K
associated (by uX∗) to a locally constant constructible sheaf

L of projective Λ–modules on Xo
K

and let L∗ be the dual of L with corresponding
sheaf L ∗ := uX∗L

∗. Then it follows from the construction that there are canonical
maps

(8.11.1) L ⊗Ψ(L ∗)→ Ψ(Z/pr)

and

(8.11.2) j∗L⊗Ψ(L∗)→ Ψ(Z/pr)

on X o
K

and XK respectively, which induce cup products

(8.11.3) ∪ : H∗(X o
K
,L )×H∗(X o

K
,Ψa(L ∗))→ H∗(X o

K
,Ψa(Z/pr)),

and

(8.11.4) ∪ : H∗(Xo
K
, L)×H∗

c (Xo
K
, L∗)→ H∗

c (Xo
K
,Z/pr)

and the isomorphisms obtained from 6.5 and 8.9 are compatible with these pairings.

8.12. There is also a finer variant of the above construction. Let D = E ∪ F
be a decomposition of D into two divisors, and let ΨE(L ) ⊂ Ψ(L ) denote the
subcomplex obtained by taking in 8.3 only the sum over divisors lying in E and
intersections of such divisors. Then by the same argument used to prove 8.9, one
gets a canonical isomorphism in the derived category

(8.12.1) RΓ(X o
K
,Ψa

E(L )) ' RΓ((X − F )K , j!L).

In what follows we denote the right side of this equation by RΓE,F (Xo
K
, L) and by

H∗
E,F (Xo

K
, L) the corresponding cohomology groups (though of course these groups

depend on the compactification X of Xo).
These cohomology groups with partial compact support also satisfy Poincaré

duality:

Proposition 8.13. With notation as above, there is a canonical isomorphism

(8.13.1) RΓE,F (Xo
K
, L)→ RHom(RΓF,E(Xo

K
, L∗),Λ(−d)[−2d]).

Proof. Consider the commutative diagram

(8.13.2)

X − F jF−−−−→ X

jE

x xjE

X −D jF−−−−→ X − E.
Lemma 8.14. For any locally constant constructible sheaf H of Λ–modules on

(X −D)K there is a canonical isomorphism

(8.14.1) jE!RjF∗(H)→ RjF∗jE!(H).

Proof. Note first there there is a canonical map jE!jF∗ → jF∗jE!, induced
by adjunction from the natural isomorphism j∗EjF∗jE! ' jF∗. By the universal
property of derived functors we therefore obtain a morphism of functors

(8.14.2) jE!RjF∗ → RjF∗jE!

This defines the morphism 8.14.1. To verify that it is an isomorphism for H locally
constant constructible, we may pass to the strict henselization of XK at a geometric
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point. Let dE (resp. dF ) denote the number of components of E (resp. F ). Then
the fundamental group ∆E of X −E is isomorphic to Ẑ(1)dE and the fundamental
group ∆F ofX−F is isomorphic to Ẑ(1)dF , and the fundamental group ∆ ofX−D is
isomorphic to ∆E×∆F . By filtering H first by subsheaves of the form nH (n ∈ Z),
and then further by irreducible subrepresentations the proof is then further reduced
to the case when H is of the form HE ⊗ HF for some representations HE (resp.
HF ) of ∆E (resp. ∆F ). This reduces the proof the case when X = AdE × AdF

for some integers dE and dF , X − E = GdE
m × AdF , X − F = AdE × GdF

m , and H
is obtained from a sheaf HE on GdE

m tensored with a sheaf HF pulled back from
GdF

m . In this case the result follows from the Künneth formula [24, III, 1.6.4 and
1.7.1]. �

For a locally constant constructible sheaf H of projective Λ–modules on (X −
D)K we have

(8.14.3) RjF∗jE!(H)⊗L RjE∗jF !H
∗ ' j!(H ⊗H∗).

The trace map therefore induces a morphism

(8.14.4) RΓ(XK , RjF∗jE!(H))⊗L RΓ(XK , RjE∗jF !(H∗))→ Λ(−d)[−2d]

which defines the map 8.13.1. To see that it is an isomorphism, one can either
proceed by a local group cohomology computation, or as follows using local duality.
Let f : XK → Spec(K) momentarily denote the structure morphism, and let
ωXK

:= f !Λ ' Λ(−d)[−2d] denote the dualizing complex [24, I]. Write DX(−) for
the functor RH om(−, ωXK

) and DK(−) for RHom(−,Λ).
By duality [9, Th. Finitude, 4.3] and 8.14 above we then have

RjF∗jE!(H) ' jE!RjF∗(H)
' DXRjE∗DX−ERjF∗DX−D(DX−D(H))
' DXRjE∗jF !(DX−D(H)).

Since f is proper so that Rf! = DKRf∗DX is equal to Rf∗, we get
(8.14.5)
DKRf∗RjF∗jE!(H) ' Rf∗RjE∗jF!(DX−D(H)) ' Rf∗RjE∗jF!(H

∗)(−d)[−2d].

�

8.15. Next we define another complex Φ(OX o
K

) on X o
K

.
For A ⊂ {1, . . . , n} the V -scheme DA is smooth, and the closed subscheme

(8.15.1)
⋃
i/∈A

(Di ∩DA) ⊂ DA

is a divisor with normal crossings in DA. We can therefore apply the discussion in
section 6 to DA with respect to the divisor 8.15.1 to get a topos Do

A,K
. We write

SA for the site defining Do
A,K

.

For an object (U,N) of S (the site defining X o
K

), let N → UK be the nor-
malization of UK in N , and let N

o

A denote the maximal reduced subscheme of the
pullback of N to Do

A ×X N . Then N
o

A → Do
A,K

is finite and étale by 7.5, and

therefore (UA, N
o

A) is an object of the site SA.
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Define Φ(OX o
K

)r to be the presheaf

(8.15.2) (U,N) 7→ ⊕A⊂{1,...,n},|A|=rΓ((UA, N
o

A),ODo
A,K

),

and let Φa(OX o
K

)r be the associated sheaf. We define a map

(8.15.3) d : Φa(OX o
K

)r → Φa(OX o
K

)r+1

as follows. SayA = {i1, . . . , ir+1} and for 1 ≤ j ≤ r+1 letAj = {i1, . . . , îj , . . . , ir+1}.
Let (U,N) ∈ S be an object with U = Spec(R) affine, and let S denote the

coordinate ring of the normalization of U in N . If IA ⊂ R (resp. IAj ⊂ R) denotes
the ideal ofDA (resp. DAj

), then Γ((UA, N
o

A), ÕDo
A
) is equal to the normalization of

(S/IAS)red, and Γ((UAj
, N

o

Aj
), ÕDo

Aj
) is equal to the normalization of (S/IAj

S)red

(here ÕDo
A

and ÕDo
Aj

are as in 6.12). Since DA ⊂ DAj we have IAj ⊂ IA, and hence
there is a canonical map
(8.15.4)

∂j : Γ((UAj , N
o

Aj
), ÕDo

Aj,K
) = (S/IAjS)̃→ (S/IAS)̃ = Γ((UA, N

o

A), ÕDo
A,K

).

Taking the alternating sums
∑r+1

j=1 for various choices of A and sheafifying we obtain
the map 8.15.3. It follows immediately from the construction that d2 = 0 so we get
a complex denoted Φa(OX o

K
).

Note that Φa(OX o
K

)0 = OX o
K

. In particular, there is a canonical map JX →
Φa(OX o

K
)0 and it follows immediately from the above computations that d(JX) =

0. We therefore get a morphism of complexes

(8.15.5) JX → Φa(OX o
K

).

Similarly, for any integer r ≥ 1 we get a complex Φa(OX o
K
/pr) by replacing

ODo
A,K

in the above with ODo
A,K

/pr, and the map 8.15.5 induces a morphism

(8.15.6) JX/p
r → Φa(OX o

K
/pr).

Proposition 8.16. For every integer r ≥ 1, the induced morphism

RνX∗JX/p
r → RνX∗Φa(OX o

K
/pr)

is an isomorphism in D̃(OXV
).

Proof. By a standard reduction it suffices to consider the case when X =
Spec(R) is the spectrum of a strictly henselian local ring, and to prove the corre-
sponding result for global cohomology groups. In this case by our assumptions each
DA also has the same form and we can also apply the purity theorem 2.17 to DA.
Let S = V [T1, . . . , Td] and let S∞ be as in 2.16. For any integer r and 1 ≤ i1 <
i2 < · · · < ir ≤ d let Si1...ir,∞ denote (S∞/(Ti1 , . . . , Tir ))red = (S/(Ti1 , . . . , Tir ))∞.
Then by 3.10 and 6.9 the complex RνX∗Φa(OX o

K
/pr) is almost isomorphic to

(8.16.1) RΓ(∆∞, R/p
r ⊗S (S∞ → ⊕iSi,∞ → ⊕i1<i2Si1i2,∞ → · · · )),

and as before

RνX∗JX/p
r ' RΓ(∆∞, R/(pr)⊗S J

(S)
∞ ) (almost isomorphism).

It therefore suffices to show that the natural map

(8.16.2) J (S)
∞ → (S∞ → ⊕iSi,∞ → ⊕i1<i2Si1i2,∞ → · · · )
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is a quasi–isomorphism (since this is a complex of p-torsion free modules this will
also imply that it is a quasi-isomorphism modulo pr). For this note that the complex
on the right side is equal to the tensor product of the complexes obtained from each
V [Ti] and J

(S)
∞ is equal to the tensor product of the complexes obtained from the

ideal defining the origin in each V [Ti]. It therefore suffices to consider the case
when d = 1 in which case the result is immediate. �

8.17. More generally for a subset E ⊂ {1, . . . , n} there is a complex Φa
E(OX o

K
)

obtained by summing only over subsets A ⊂ E in 8.15.2. The same argument used
above shows that there is a canonical morphism

(8.17.1) JE → Φa
E(OX o

K
),

which induces an almost isomorphism after dividing by pr and applying RνX∗.

8.18. Fix A ⊂ {1, . . . , n}. The presheaf

(8.18.1) (U,N) 7→ Γ(N
o

A, ÕDo
A
)

can be described Galois–theoretically as follows. Let U → X be an étale morphism
with U = Spec(R) affine, and assume that Uo

K
satisfies the assumptions in 7.1.

Define groups ∆, HA, IA etc. as in 7.7. Let RA denote the coordinate ring of
DA. Let RA denote the integral closure of RA in the maximal subextension of the
chosen geometric generic point of Do

A,K
which is unramified over Do

A,K
. Then RA

is a continuous representation of ∆A and ÕDo
A

is the corresponding presheaf on SA

(defined as in 8.15). The restriction of the presheaf 8.18.1 to Uo
K,Fet

is then the

sheaf corresponding to the induced representation Ind∆
HA

(RA). Note in particular
that by the projection formula for any continuous ∆–representation M there is a
canonical isomorphism

(8.18.2) M ⊗ Ind∆
HA

(RA)→ Ind∆
HA

(M |∆A
⊗RA).

This implies in particular that for any sheaf L in X o
K

there is a canonical map
of complexes in X o

K

(8.18.3) Ψa(L )→ L ⊗ Φa(OX o
K

),

and similarly for the complexes defining cohomology with partial compact support.

8.19. Fix now a decomposition D = E ∪ F . Let L be a locally constant
constructible sheaf of flat Z/pr–modules on Xo

K
and set L := uX∗L. We then get

a morphism

(8.19.1) L ⊗JE → L ⊗ Φa
E(OX o

K
),

which induces an almost quasi-isomorphism after applying RνX∗. Combining this
with 8.18.3 we obtain a morphism in V

a −Mod

(8.19.2) RΓE,F (Xo
K
, L) ' RΓ(X o

K
,Ψa

E(L ))→ RΓ(X o
K
,L ⊗JE).

It follows from the construction that the resulting diagram

(8.19.3)

RΓE,F (Xo
K
, L)×RΓF,E(Xo

K
, L∗) ∪−−−−→ RΓc(Xo

K
,Z/pr)y y

RΓ(X o
K
,L ⊗JE)×RΓ(X o

K
,L ∗ ⊗JF ) ∪−−−−→ RΓ(X o

K
,J )
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commutes.
This defines the map 6.16.1. To prove 6.16 we prove the stronger statement that

8.19.2 is an isomorphism and in addition we will show that under this isomorphism
the usual trace map on étale cohomology agrees with the one defined in 6.14.

8.20. Let (Y,DY ) be another smooth proper V –scheme with DY a divisor with
simple normal crossings. Let DY = EY ∪ FY be a decomposition of the divisor
into two divisors with no common irreducible component, and let f : Y → X
be a morphism such that f−1(E) ⊂ EY and f−1(F ) ⊂ FY . It follows from the
construction that then there is an induced morphism

(8.20.1) f∗ : RΓ(X o
K
,L ⊗JE)→ RΓ(Y o

K
, f∗L ⊗JEY

).

and this morphism is compatible with cup products and the trace maps.
Let dX (resp. dY ) denote the relative dimension of X (resp. Y ) over V . The

map 8.20.1 induces a morphism

RHom(RΓ(Y o
K
, f∗L ⊗JEY

), V /prV (−dY )[−2dY ])

��
RHom(RΓ(X o

K
,L ⊗JE), V /prV (−dX)[−2dX ])(dX − dY )[2(dX − dY )].

Using 6.17.1, this morphism corresponds to a morphism

f∗ : RΓ(Y o
K
, f∗L ∗ ⊗JFY

)→ RΓ(X o
K
,L ∗ ⊗JF ).

Similarly Poincaré duality for étale cohomology with partial compact supports
8.13 defines a morphism

(8.20.2) f et
∗ : RΓEY ,FY

(Y o
K
, f∗L)→ RΓE,F (Xo

K
, L)(dX − dY )[2(dX − dY )].

Theorem 8.21. Assume f is a closed immersion, and that Y meets D transver-
sally, and EY = E ∩ Y and FY = F ∩ Y . Then the diagram
(8.21.1)

RΓ(Y o
K
, f∗L ⊗JEY

)
f∗−−−−→ RΓ(X o

K
,L ⊗JE)(dX − dY )[2(dX − dY )]

σY

x xσX

RΓEY ,FY
(Y o

K
, f∗L)⊗ V fet

∗−−−−→ RΓE,F (Xo
K
, L)⊗ V (dX − dY )[2(dX − 2dY )]

commutes in V
a −Mod, where the vertical arrows are the morphisms 8.19.2.

Proof. Let us first consider the case when Y ⊂ X is a smooth divisor meeting
D transversally (the general case will then be deduced from this special case). Let
Y o denote Y − (Y ∩D) and let DY = Y ∩D = EY ∪ FY be the decomposition of
the divisor DY obtained from D = E ∪ F . Write d for the relative dimension of X
over V , and let X̃o denote Xo − Y o. Let X̃ o

K
denote the topos associated to the

pair (X,Y ∪ D). Let Ẽ = E and F̃ = F ∪ Y so that we obtain a decomposition
Y ∪ D = Ẽ ∪ F̃ . The topos X̃ o

K
is the category of sheaves on the site S̃ whose

objects are pairs (U,N) where U → X is étale and N → X̃o
K
×X U is finite étale

and surjective. There is a natural functor

(8.21.2) S → S̃ , (U,N) 7→ (U,N ×Xo X̃o)
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which induces a morphism of topoi j : X̃ o
K
→ X o

K
. There is also a morphism

of topoi i : Y o
K
→ X o

K
. If SY denotes the site in the definition of Y o

K
then the

morphism i is obtained from the functor

(8.21.3) S → SY , (U,N) 7→ (U ×X Y,N ×X Y ).

Proposition 8.22. Let L be as in 8.21. There is a canonical distinguished
triangle

(8.22.1) L ⊗JE → Rj∗(j∗L ⊗J eE)→ i∗(i∗L ⊗JEY
)(−1)[−1]→ L ⊗JE [1]

in D̃(X o
K

).

Proof. By the projection formula it suffices to consider the case when L =
Z/pr for some r. Let (U,W ) ∈ S be an object. Then the localized topos
X̃ o

K
|j−1(U,W ) is isomorphic to the topos of sheaves on the site whose objects are

pairs (U ′,W ′), where U ′ → U is étale and W ′ → W ×Xo X̃o is a finite étale mor-
phism. Let W̃ denote W ×Xo X̃o. Any finite étale surjective morphism W ′ → W̃
defines such a pair (namely (U,W ′)) and hence we obtain a morphism of topoi

(8.22.2) ε : X̃ o
K
|j−1(U,W ) → W̃Fet.

If U admits an étale morphism

(8.22.3) π : U → Spec(V [X1, . . . , Xd+l])× Spec(V [y])

for some integers d, l ≥ 0, such that Y is the inverse image of {y = 0} and D is the
inverse image of {X1 · · ·Xd = 0} (and say E is the inverse image of {X1 · · ·Xs =
0}) and W = Spec(R) for some R, then using the almost purity theorem we can
compute

(8.22.4) H∗(X̃ o
K
|j−1(U,W ),JE/p

rJE)

as follows. Namely, let S̃∞ denote the ring

(8.22.5) S̃∞ := V [X1/p∞

1 , . . . , X
1/p∞

d , y1/p∞ ],

and let

(8.22.6) S∞ := V [X1/p∞

1 , . . . , X
1/p∞

d , y].

Then if J eE ⊂ S̃∞ denotes the ideal (X1 · · ·Xs) we have as in the proof of 6.13
almost isomorphisms

H∗(X̃ o
K
|j−1(U,W ),J eE/prJ eE) ' H∗(W̃Fet, ε∗J eE/prJ eE)

' R⊗S H
∗(∆̃∞, J eE/prJ eE),

where ∆̃∞ denotes the Galois group of S̃∞ over S. Let ∆∞ denote the Galois group
of S∞ over S so that there is a surjection ∆̃∞ → ∆∞ with kernel Q isomorphic to
Zp(1). The kernel Q corresponds to the étale covers of W̃ obtained by taking roots
of y. We then have the Hochschild-Serre spectral sequence

(8.22.7) Eij
2 = Hi(∆∞,H

j(Q, J eE/prJ eE)) =⇒ Hi+j(∆̃∞, J eE/prJ eE).

Now for any cohomology class c ∈ Hi(∆∞,H
j(Q, J eE/prJ eE)) with i > 0, there

exists a finite index subgroup ∆′
∞ ⊂ ∆∞, corresponding to a covering W ′ →

W obtained by extracting some roots of the Xi, such that c maps to zero in
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Hi(∆′
∞,H

j(Q, J eE/prJ eE)). It follows that the sheaf on WFet associated to the
presheaf sending a finite étale morphism W ′ →W to

Hi(X̃ o
K
|j−1(U,W ′),J eE/prJ eE)

is almost isomorphic to the sheaf corresponding to the ∆∞-representation

Hi(Q, J eE/(pr))⊗S R.

We conclude that the sheaf on S associated to the presheaf

(8.22.8) (U,W ) 7→ Hi(X̃ o
K
|j−1(U,W ′),J eE/prJ eE)

is almost isomorphic to the sheaf associated to the presheaf whose restriction to
WFet for any object (U,W ) as above is the sheaf corresponding toHi(Q, J eE/(pr))⊗S

R.
Note that as a Q–module, J eE is isomorphic to JE ⊗ V [y1/p∞ ]. Thus we have

(8.22.9) Hi(Q, J eE/prJ eE)⊗S R ' Hi(Q,V [y1/p∞ ]/(pr))⊗V [y] JE ⊗S R.

This reduces us to the case when R = V [y]. We may further localize along
1 + y. So we consider the ring R = V [κ±] with divisor defined by y := κ − 1,
and even pass to the covering obtained by taking roots of κ (which gives an étale
covering after inverting p). Let Vm denote V [π1/m], and let

Rm := Vm[κ±1/pn

]sh,

where the superscript ‘sh’ denotes strict henselization at the point defined by
(π1/m, κ1/pn − 1). Let R∞ denote lim−→m

Rm, which is a V -algebra. Also let Sn,m

denote the normalization of the ring Rm[y1/pn

], and let Sn = lim−→m
Sn,m. Finally

set S∞ = lim−→n
Sn. Let Jn,m ⊂ Sn,m (resp. Jn ⊂ Sn) be the ideal generated by

y1/pn

.
We then need to compute the cohomology groups Hi(Zp(1), S∞/prS∞). This

is a rather delicate computation which is explained in detail in [13, pp. 231–233].
The answer is the following (almost isomorphisms):

(i) Hi(Zp(1), S∞/prS∞) ' R∞/psR∞;
(ii)H1(Zp(1), S∞/prS∞) = (R∞/yR∞)norm⊗(Z/pr)(−1), where (R∞/yR∞)norm

denotes the normalization of R∞/yR∞.
(iii) Hi(Zp(1), S∞/prS∞) = 0 for i > 1.
This implies that R1j∗j

∗J eE/prJ eE is annihilated by y and there is a canonical
almost epimorphism

(8.22.10) i∗(JEY
/prJEY

)→ R1j∗j
∗J eE/prJ eE .

That this morphism is in fact an almost isomorphism follows by reduction to the
case of A1 via the same argument used above in which case it follows from (ii). �

Similarly on (X − F )K there is a distinguished triangle of étale sheaves

(8.22.11) jE!L→ Rj∗j
∗jE!L→ i∗i

∗jE!L(−1)[−1]→ jE!L[1],

where jE : X − D ↪→ X − F and j : X − Y ∪ F ↪→ X − F are the inclusions.
Indeed using 8.14 it suffices to consider the higher direct images of j∗L under
j : X − Y ∪ D → X − D. Furthermore, by the projection formula it suffices to
consider the case of L = Z/(pr). By working locally on X one further reduces to
computing R1j∗Z/(pr) for the inclusion of Gm ↪→ A1 which follows from a group
cohomology computation as in 3.5.
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Proposition 8.23. The morphisms denoted momentarily by i′∗ and i′et∗

(8.23.1) i′∗ : RΓ(Y o
K
, i∗L ⊗J eE)→ RΓ(X o

K
,L ⊗JE)(1)[2]

and

(8.23.2) i′et∗ : RΓ eE, eF (Y o
K
, i∗L)→ RΓE,F (Xo

K
, L)(1)[2]

obtained from the boundaries in the long exact sequences obtained from 8.22.1 and
8.22.11 agree with the maps i∗ and iet∗ respectively.

Proof. Note first of all that the diagrams

RΓ(Y o
K
, i∗L ⊗J eE)⊗RΓ(X o

K
,L ∗ ⊗JF )

−∪i∗(−) //

i∗⊗id

��

RΓ(Y o
K
,JY )

i∗

��
RΓ(X o

K
,L ⊗JE)(1)[2]⊗RΓ(X o

K
,L ∗ ⊗JF ) ∪ // RΓ(X o

K
,JX)(1)[2],

and

RΓ(Y o
K
, i∗L ⊗J eE)⊗RΓ(X o

K
,L ∗ ⊗JF )

−∪i∗(−) //

i′∗⊗id

��

RΓ(Y o
K
,JY )

i′∗
��

RΓ(X o
K
,L ⊗JE)(1)[2]⊗RΓ(X o

K
,L ∗ ⊗JF ) ∪ // RΓ(X o

K
,JX)(1)[2]

commute. It follows that it suffices to consider the case when L = Z/(pr), and
E = D (so F = ∅). Furthermore, by Poincaré duality it suffices to show that the
boundary maps

i′∗ : H2(d−1)(Y o
K
, i∗L ⊗JY )→ H2d(X o

K
,L ⊗JX),

and
i′et∗ : H2(d−1)

c (Y o
K
, i∗L)→ H2d

c (Xo
K
, L)

are compatible with the trace maps.
This is well–known in the case of étale cohomology. Indeed by the construction

the induced map

(8.23.3) H∗
c (Y o

K
, Ri!Z/pr) ' H∗

c (Y o
K
,Z/pr(−1)[−2])→ H∗

c (Xo
K
,Z/pr)

given by the boundary of 8.22.1 is equal to the map induced by the adjunction
Ri!Ri

!Z/pr → Z/pr. This combined with construction of the trace map in [9,
Cycle, 2.3] shows that the two trace maps in the étale theory coincide.

For the compatibility of i′∗ with the trace maps it suffices to study the sequence

(8.23.4) · · ·RdνX∗JX → Rj∗j
∗RdνX∗JX → Rd−1νX∗i∗JY → 0.

obtained by applying RνX∗ to the sequence 8.22.1. Now a local calculation as in
the proof of 4.7 shows that this sequence is almost isomorphic to the sequence

(8.23.5) · · ·Ωd
X → Ωd

X(log Y )→ Ωd−1
Y → 0.

Here we have used the isomorphism between Ωd−1
Y and

(8.23.6) Coker(Ωd
X → Ωd

X(log Y )) ' i∗Ωd
X(log Y )
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obtained by choosing locally a local coordinate y for Y in X and defining the
isomorphism

(8.23.7) Ωd−1
Y → i∗Ωd

X(log Y ), ω 7→ i∗(ω̃ ∧ d log(y)),

where ω̃ ∈ Ωd−1
X is a lifting of ω. If u ∈ O∗

X is a unit, then d log(uy) is equal to
u−1du + d log(y) from which one sees that the map 8.23.7 is independent of the
choices. We thus get a global isomorphism. It follows that i′∗ is induced from the
boundary map

(8.23.8) Hd−1(Y,Ωd−1
Y )→ Hd(X,Ωd

X)

obtained from the short exact sequence

(8.23.9) 0→ Ωd
X → Ωd

X(log Y )→ i∗Ωd−1
Y → 0.

We leave to the reader the task of verifying that this map is equal under Serre
duality to the canonical isomorphism

(8.23.10) H0(X,OX) ' H0(Y,OY )

thereby completing the proof. �

8.24. We obtain a diagram

(8.24.1) RΓE,F (Xo
K
, L) a //

��

RΓ(X o
K
,L ⊗JE)

��
RΓ eE, eF (X̃o

K
, j∗L) b //

��

RΓ(X̃ o
K
, j∗L ⊗J eE)

��
RΓEY ,FY

(Y o
K
, i∗L)(−1)[−1] c //

��

RΓ(Y o
K
, i∗L ⊗JEY

)(−1)[−1]

��
RΓE,F (Xo

K
, L)[1]

a[1] // RΓ(X o
K
,L ⊗JE)[1],

where the columns are the distinguished triangles obtained by applying the global
section functor to 8.22.1 and 8.22.11, and the horizontal arrows are the morphisms
8.19. To prove 8.21 in the present special case it suffices to show that 8.24.1
commutes.

8.25. First let us make some general observations about the construction of the
complexes Ψ(−), Ψ(−), and Φ(−).

Let ∆̃
+

denote the category whose objects are finite ordered sets (including
the empty set!) and whose morphisms are order preserving monomorphisms. Let
∆+ ⊂ ∆̃

+
denote the full subcategory of nonempty ordered sets. For n ≥ 0 let

[n] denote the ordered set {0, 1, . . . , n} and by convention we define [−1] to be the
empty set.

For a topos T let T e∆+

denote the constant ∆̃
+
-topos associated to T (see for

example [1, Vbis] for the notion of a D-topos for a category D). So a sheaf F ∈ T e∆+

consists of a sheaf Fn for every [n] ∈ ∆̃
+

and for every inclusion [n] ↪→ [m] a
morphism Fn → Fm. In other words, the restriction of F to ∆+ is a strictly
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cosimplicial sheaf in T and so the category T
e∆+

is equivalent to the category of
triples (F−1, F+, σ), where F−1 is in T , F+ is a strictly cosimplicial sheaf in T , and
σ : F−1 → F+ is an augmentation (where F−1 is viewed as a constant cosimplicial
sheaf). If S is a site defining T , then the topos T e∆+

is isomorphic to the topos
associated to the site S

e∆+

whose objects are pairs (U, [n]), where U ∈ S and
[n] ∈ ∆̃

+
, and whose morphisms (U ′, [n′]) → (U, [n]) are pairs f : U ′ → U and

δ : [n] ↪→ [n′], where f is a morphism in S and δ is a morphism in ∆̃
+
. Such a

morphism is a covering if f is a covering in S and [n] = [n′].

8.26. If Λ is a ring in T , then T e∆+

is also ringed by the sheaf of rings which in
degree n is equal to Λ. Let D+(T e∆+

,Λ) denote the bounded below derived category
of complexes of Λ–modules in T e∆+

. There is a total complex functor

(8.26.1)
∫

: D+(T e∆+

,Λ)→ D+(T,Λ)

defined as follows. A Λ–module K ∈ T
e∆+

defines a complex in T whose degree
r-term is K([r − 1]) and whose transition morphism K([r − 1]) → K([r]) is given
by the sum

(8.26.2) Σr
i=0(−1)i∂i : K([r − 1])→ K([r]),

where ∂i : [r− 1]→ [r] is the unique injective map whose image does not contain i
(if r = 0 we take the map induced by the unique map [−1]→ [0]). This construction
is functorial in K and therefore if K• is a complex of Λ–modules in T e∆+

we obtain
a bicomplex by applying the above construction in each degree. We define

∫
K• to

be the associated single complex. We also sometimes refer to this complex as the
normalized complex of K•.

8.27. A complex K• in T
e∆+

is equivalent to a complex K•
−1 in T , a strictly

cosimplicial complex K•
+ in T , and an augmentation K•

−1 → K•
+. If Tot(K•

+)
denotes the usual total complex of the cosimplicial complex K•

+, then the augmen-
tation K•

−1 → K•
+ induces a morphism of complexes K•

−1 → Tot(K•
+) and

∫
K• is

the cone of this morphism of complexes. It follows that
∫

takes quasi–isomorphisms
to quasi-isomorphisms and hence passes to the derived category. Moreover this im-
plies that

∫
takes distinguished triangles to distinguished triangles. This defines

the triangulated functor 8.26.1.
For a morphism f : T ′ → T of topoi there is an induced morphism of topoi

T ′
e∆+

→ T
e∆+

which we usually denote by the same letter f . If T ′ and T are ringed
by Λ′ and Λ respectively, and f is a morphism of ringed topoi then the diagram

(8.27.1)

D+(T ′e∆+

,Λ′)
Rf∗−−−−→ D+(T e∆+

,Λ)
R y yR

D+(T ′,Λ+)
Rf∗−−−−→ D+(T,Λ)

commutes.

We use this to prove that 8.24.1 commutes as follows. To ease the notation,
we give the proof in the case when E = D so that F = ∅. The general case is
obtained by exactly the same argument replacing X in the following by X − F .
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Let s : Xo ↪→ X be the inclusion, and write also s for the inclusions Y o ↪→ Y ,
X̃o ↪→ X̃, Xo

K
↪→ XK etc.

Lemma 8.28. Let U → X be an étale morphism and let L be a sheaf of Λ–
modules on Uo

K,Fet
. Set YU,K := UK ×X Y so that we have a cartesian diagram

(8.28.1)

YU,K
i−−−−→ UK

s

x xs

Y o
U,K

i−−−−→ Uo
K
.

Then the natural map in the derived category of Λ–modules in YU,K,et

(8.28.2) i∗s∗L→ s∗i
∗L

is an isomorphism.

Proof. Let ȳ → YU,K be a geometric point. Base changing the diagram 8.28.1
to Spec(OUK ,ȳ) we reduce the proof to the analogous statement for Spec(OUK ,ȳ).
In this case the result is immediate because Uo

K
and Y o

U,K
are K(π, 1)’s and the

map Y o
U,K
→ Uo

K
induces an isomorphism on fundamental groups. �

8.29. Let U· ∈ HR(X)′ be a hypercover of X, where HR(X)′ is the category
defined in 9.4. Let Ũ·,K denote U·,K ×X X̃, and let YU,·,K denote U·,K ×X Y . We
then have a commutative diagram of simplicial topoi

(8.29.1) Ũ·,K,et

j−−−−→ U·,K,et
i←−−−− YU,·,K,et.

For a sheaf F· in Uo
·,K,Fet

we then obtain as in 7.21 complexes Ψ(j∗F ), Ψ(F ),

and Ψ(i∗F ) on Ũ·,K,et, U·,K,et, and YU,·,K,et respectively. It follows immediately
from the construction of these complexes that Ψ(j∗F ) is canonically isomorphic to
j∗Ψ(F ). Also the maps 8.28.2 define a morphism

(8.29.2) i∗Ψ(F )→ Ψ(i∗F )

which by 8.28 is an isomorphism.
The diagram 8.29.1 extends to a diagram of ∆̃

+
–topoi

(8.29.3) Ũ
e∆+

·,K,et

j−−−−→ U
e∆+

·,K,et

i←−−−− Y
e∆+

U,·,K,et
.

Define Ψe∆+(F ) to be the sheaf in U
e∆+

·,K,et
whose restriction to Ur,K,et (for r ≥ −1)

is Ψ(F )r+1 and whose transition maps are given by the morphisms 7.21.2. Then
Ψ(F ) is equal to

∫
Ψe∆+(F ). Similarly we have sheaves Ψe∆+(j∗F ) and Ψe∆+(i∗F )

on Ũ
e∆+

·,K,et
and Y

e∆+

U,·,K,et
respectively. The isomorphism 8.29.2 is then induced by an

isomorphism i∗Ψe∆+(F )→ Ψe∆+(i∗F ).

Lemma 8.30. Assume F is an injective sheaf in Uo
·,K,Fet

. Then the natural map

of sheaves in U
e∆+

·,K,et

(8.30.1) Ψe∆+(F )⊗L Rj∗Λ→ Rj∗j
∗Ψe∆+(F )

is an isomorphism.
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Proof. It suffices to verify that 8.30.1 induces an isomorphism on stalks at
a geometric point ȳ → Un,K . Let W denote Spec(OUn,K ,ȳ), let YW ⊂ W denote

the inverse image of Y , let W̃ denote the inverse image of Ũ , and define W o
A etc.

as before. Let ∆ denote the fundamental group of W o, and let ∆̃ denote the
fundamental group of W̃ o. The fundamental group of W o (resp. W̃ o) is isomorphic
to Ẑ(1)d (resp. Ẑ(1)d+1) for some integer d, and the map from ∆ (resp. ∆̃) to the
fundamental group of Uo

n,K
(resp. Ũo

n,K
) is injective since we have by assumption

an étale morphism 7.1.1. It follows from 7.18 that the pullback of F to W o is an
injective ∆–representation, so it suffices to prove the lemma for W .

Let M be the representation corresponding to F . Then Ψe∆+(F ) is a direct sum
of sheaves of the form jA∗j

∗
Aj∗F for subsets A ⊂ {1, . . . ,m}. Let IA ⊂ ∆ (resp.

ĨA ⊂ ∆̃) denote the inertia group of DA. Then the right side of 8.30.1 computes
the direct sum of the groups

(8.30.2) H∗(∆̃/ĨA,M IA).

On the other hand, the map ĨA → IA is an isomorphism, so the restriction of M
to ĨA is an injective representation. Therefore 8.30.2 is isomorphic to

(8.30.3) H∗(∆̃,M).

From the Leray spectral sequence associated to the map ∆̃ → ∆ (whose kernel is
isomorphic to Ẑ(1)) and the fact that M is an injective ∆–representation we find
that

(8.30.4) H0(∆̃,M) 'M∆, H1(∆̃,M) ' H0(∆,M ⊗H1(Ẑ(1),Λ)),

and all other cohomology groups are zero.
To compute the left side of 8.30.1, note that the distinguished triangle

(8.30.5) Λ→ Rj∗Λ→ i∗Λ(−1)[−1]→ Λ[1],

where i : WY ↪→W denotes the inclusion shows that we have

(8.30.6) H0(W,Ψe∆+(F )⊗L Rj∗Λ) = ⊕A⊂{1,...,m}M
∆,

and

Hi(W,Ψe∆+(F )⊗L Rj∗Λ) = Hi−1(W,Ψe∆+(F )⊗ i∗Λ(−1))

' Hi−1(WY , i
∗Ψe∆+(F ))(−1).

for i > 0. Since WY is strictly henselian local, we get that

(8.30.7) Hi(W,Ψe∆+(F )⊗L Rj∗Λ) = 0

for i > 1, and that
(8.30.8)
H1(W,Ψe∆+(F )⊗L Rj∗Λ) = H0(WY , i

∗Ψe∆+(F ))(−1) = ⊕A⊂{1,...,m}M
∆(−1).

�

8.31. Assume now that F is an injective sheaf in U·,K,Fet. In U
e∆+

·,K,et
we then

obtain a distinguished triangle

(8.31.1) Ψe∆+(F )→ Rj∗Ψe∆+(j∗F )→ i∗Ψe∆+(i∗F )(−1)[−1]→ Ψe∆+(F )[1]
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by tensoring the usual distinguished triangle

(8.31.2) Λ→ Rj∗Λ→ i∗Λ(−1)[−1]→ Λ[1]

with Ψe∆+(F ) and applying 8.30. Applying the total complex functor we obtain a
distinguished triangle

(8.31.3) Ψ(F )→ Rj∗Ψ(j∗F )→ i∗Ψ(i∗F )(−1)[−1]→ Ψ(F )[1]

in U·,K,et.

8.32. Let s
!e∆+F denote the sheaf in U

e∆+

·,K,et
whose degree −1-sheaf is s!F and

0 in all degrees ≥ 0, and define s
!e∆+(j∗F ) and s

!e∆+(i∗F ) similarly. The maps

(8.32.1) s!F → Ψ(F )0, s!j
∗F → Ψ(j∗F )0, s!i

∗F → Ψ(i∗F )0

induce morphisms of sheaves

(8.32.2) s
!e∆+(F )→ Ψe∆+(F ), s

!e∆+j∗F → Ψe∆+(j∗F ), s
!e∆+(i∗F )→ Ψe∆+(i∗F ).

These maps induce a diagram in the derived category of Λ–modules on U
e∆+

·,K,et

(8.32.3)
s
!e∆+(F ) −−−−→ Rj∗s!e∆+j∗F −−−−→ i∗s!e∆+(i∗F )(−1)[−1] −−−−→ s

!e∆+(F )[1]y y y y
Ψe∆+(F ) −−−−→ Rj∗Ψe∆+(j∗F ) −−−−→ i∗Ψe∆+(i∗F )(−1)[−1] −−−−→ Ψe∆+(F )[1].

Lemma 8.33. The diagram 8.32.3 commutes.

Proof. This follows from the construction. �

8.34. Similarly, we can consider the diagram of ∆̃
+
-topoi

(8.34.1) X̃
oe∆+

K

j−−−−→ X
oe∆+

K

i←−−−− Y
oe∆+

K
.

Let G be a sheaf of Λ-modules in X o
K

. The complexes Φa(OX o
K

) and Ψa(G) defined

in 8.15 and 8.3 are then also obtained from ∆̃
+
-versions Φae∆+(OX o

K
) and Ψae∆+(G).

Namely, let Φae∆+(OX o
K

) be the sheaf whose degree r–component (r ≥ −1) is equal

to Φa(OX o
K

)r+1 and whose transition maps are defined as in 8.15.4. Note that the
sheaf Φae∆+(OX o

K
) is actually a sheaf of rings. The sheaf Ψae∆+(G) is the sheaf whose

degree r component is Ψa(G)r+1 and again the transition maps are defined as in
7.26.

Assume now further that every (U,N) ∈ S (object of the site defining X o
K

)
the corresponding sheaf G(U,N) on NFet is a locally constant constructible sheaf of
flat Λ-modules. Then using the same argument that proved 8.22, one sees that
there is a distinguished triangle
(8.34.2)
G⊗ Φae∆+(OX o

K
)→ Rj∗(j∗G⊗ Φae∆+(O fX o

K

))→ i∗(i∗G⊗ Φae∆+(OY o
K

))(−1)[−1]+1→

in the almost derived category of sheaves in X
o e∆+

K
.
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Let J
e∆+

denote the sheaf in X
o e∆+

K
whose −1–component is J (the ideal

defining the boundary) and whose components for r ≥ 0 are zero, and similarly

define J
e∆+

and J
e∆+

Y in X̃
o e∆+

K
and Y

oe∆+

K
respectively. We then have maps

(8.34.3) J
e∆+

→ Φae∆+(OX o
K

), J̃
e∆+

→ Φae∆+(O fX o
K

), J
e∆+

Y → Φae∆+(OY o
K

)

inducing the maps

(8.34.4) J → Φa(OX o
K

), J̃ → Φa(O fX o
K

), JY → Φa(OY o
K

)

defined in 8.15.5 by normalization. It follows from the construction of the distin-
guished triangles 8.22.1 and 8.34.2 that the diagram

(8.34.5) G⊗ Φae∆+(OX o
K

)

��

G⊗J
e∆+

��

oo

Rj∗(j∗G⊗ Φae∆+(O fX o
K

))

��

Rj∗(j∗G⊗ J̃
e∆+

)

��

oo

i∗(i∗G⊗ Φae∆+(OY o
K

))(−1)[−1]

��

i∗(i∗G⊗J
e∆+

Y )(−1)[−1]

��

oo

G⊗ Φae∆+(OX o
K

)[1] G⊗J
e∆+

[1]oo

commutes and becomes an isomorphism between the two distinguished triangles,
after applying Rν∗.

Note also that if Λ = Z/pr → Φae∆+(OX o
K

)/pr is the unique morphism of rings

in X
oe∆+

K
(where Λ denotes the ring which in every degree is Λ), then there is a

canonical map

(8.34.6) Ψae∆+(Λ)→ Z/pr ⊗ Φae∆+(OX o
K

).

This defines for every sheaf G of Λ–modules a morphism

(8.34.7) Ψa(G)→ G⊗Ψae∆+(Λ)→ G⊗ Φae∆+(OX o
K

).

It follows from the construction that this map induces 8.18.3 by normalization.

8.35. Next we need the analogue of the sequence 8.31.1 for the sheaves Ψa(F )
in X o

K
.

Let U → X be either an étale morphism such that the conditions of 7.1 hold (i.e.
each of the Do

A as well as ŨK := U ×X X̃o
K

are K(π, 1)’s) or the strict henselization
of X at a geometric point (in which case the conditions of 7.1 as well as condition
(R) with respect to D ∪ Y hold). Let YU ⊂ U be the inverse image of Y .

Let ∆ denote the fundamental group of Uo
K

(with respect to a geometric generic
point), ∆̃ the fundamental group of ŨK , let ∆YU

denote the fundamental group of
Y o

U,K
and the choice of a specialization morphism defines a homomorphism ∆YU

→
∆ (well–defined up to conjugation). If condition (R) with respect to D ∪ Y holds
then this map ∆YU

→ ∆ is an inclusion.
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Consider the diagram of topoi

(8.35.1)

Ũo
K,et

j−−−−→ Uo
K,et

i←−−−− Y o
U,K,et

π̃

y yπ

yπY

Ũo
K,Fet

j̄−−−−→ Uo
K,Fet

ī←−−−− Y o
U,K,Fet

.

Lemma 8.36. Let F be a sheaf of Λ–modules in Uo
K,Fet

. Then there is a canon-
ical isomorphism

(8.36.1) R1j̄∗j̄
∗F ' ī∗ī∗F (−1).

If condition (R) holds then Rsj̄∗j̄
∗F = 0 for all s > 1.

Proof. Since Ũo
K

is a K(π, 1) we have

(8.36.2) Rsj̄∗j̄
∗F ' Rs(π ◦ j)∗j∗π∗F,

and since Y o
U,K

is a K(π, 1) we have

(8.36.3) Rsī∗ī
∗F ' Rsπ∗(i∗i∗π∗F ).

The purity triangle on Uo
K,et

(8.36.4) π∗F → Rj∗j
∗π∗F → i∗i

∗π∗F (−1)[−1]

induces an exact sequence

(8.36.5) R1π∗π
∗F → R1(π ◦ j)∗j∗π∗F → π∗i∗i

∗π∗F (−1)→ R2π∗π
∗F.

Since Uo
K

is a K(π, 1) we have Riπ∗π
∗F = 0 for i > 0 which implies the first part

of the lemma, and in fact shows that for s ≥ 1 we have

(8.36.6) Rsj̄∗j̄
∗F ' Rs−1ī∗ī

∗F (−1).

If condition (R) holds then ī∗ is given in terms of group cohomology by induction
via the inclusion ∆YU

↪→ ∆ which is an exact functor. Hence the higher cohomology
groups vanish in this case. �

Corollary 8.37. Let Σ denote the kernel of the surjective homomorphism
∆̃→ ∆. There is a canonical isomorphism of ∆–representations

(8.37.1) H1(Σ,Λ) ' Ind∆
∆YU

(Λ)(−1).

Proof. For a ∆–representation M let M˜ denote the corresponding sheaf on
Uo

Fet. We then have

H1(Σ,Λ)̃ ' R1j̄∗Λ
' ī∗Λ(−1)

' Ind∆
∆YU

(Λ)̃ (−1).

�

8.38. Let IA ⊂ HA ⊂ ∆ and ĨA ⊂ H̃A ⊂ ∆̃ be the decomposition and inertia
groups of DA ⊂ U and D̃A := DA ∩ Ũ ⊂ Ũ .

The structure of the inertia groups is very simple. Write UK = Spec(R), and
let R be the integral closure of R in the compositum of all finite extensions L of
Frac(R) (in the fixed geometric generic point) for which the normalization of R in
L is étale over Uo

K
. The decomposition groups HA is defined by the choice of a
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geometric point ȳ → Spec(R) mapping to the generic point of Do
A. The inertia

group IA is equal to the subgroup of ∆ of elements which fix ȳ and act trivially
on the residue field of OSpec(R),ȳ. Let ÔR,ȳ denote the completion of the strict

henselization of R at ȳ and let R̃ȳ denote the local ring of ȳ in Spec(R ⊗R ÔR,ȳ).
If |A| = r, then R̂ȳ is isomorphic to S[[t1, . . . , tr]] for some ring S with DA defined
by t1 = t2 = · · · = tr = 0. The extension R̃ȳ is then by Abhyankar’s lemma
equal to the extensions obtained by taking roots of the variables ti. This defines
an isomorphism IA ' Ẑ(1)r. Applying the same analysis to Ũ and YU we obtain:

Corollary 8.39. The projection ĨA → IA is an isomorphism. The projection
Σ ∩ H̃A → H̃A/ĨA is injective and identifies Σ ∩ H̃A with the kernel of the map
H̃A/ĨA → HA/IA. In particular, if ΣA denotes the kernel of the homomorphism
∆̃A → ∆A (where ∆A denotes the fundamental group of Do

A,K
etc.), then we have

a commutative diagram

(8.39.1)

1 −−−−→ ΣA −−−−→ ∆̃A −−−−→ ∆A −−−−→ 1y y y
1 −−−−→ Σ ∩ H̃A −−−−→ H̃A/ĨA −−−−→ HA/IA −−−−→ 1,

where the rows are exact and the vertical maps are surjective.
If condition (R) holds, then the vertical maps in 8.39.1 are isomorphisms, and

there is a commutative diagram with exact rows

(8.39.2)

1 −−−−→ IA −−−−→ HA ∩∆YU
−−−−→ ∆YU,A

∩∆A −−−−→ 1∥∥∥ y y
1 −−−−→ IA −−−−→ HA −−−−→ ∆A −−−−→ 1.

Corollary 8.40. Let HA,Y denote the decomposition group of DA∩YU ⊂ YU ,
and let ∆YU ,A denote the fundamental group of Do

A ∩ Y o
U . The natural map of

∆A–representations

(8.40.1) IndHA

HA,Y
(Λ) ' IndHA/IA

HA,Y /IA
(Λ)→ Ind∆A

∆YU,A
(Λ)

is an isomorphism if condition (R) holds.

Corollary 8.41. There is a canonical morphism

(8.41.1) H1(Σ ∩ H̃A,Λ)→ Ind∆A

∆YU,A
(Λ)(−1)

which is an isomorphism if condition (R) holds. Furthermore, if (R) holds then
Hs(Σ ∩ H̃A,Λ) = 0 for all s > 1.

Proof. Applying 8.37 to

(8.41.2) ΣA := Ker(∆̃A → ∆A)

we obtain an isomorphism

(8.41.3) H1(ΣA,Λ) ' Ind∆A

∆YU ,A
(Λ)(−1).

From the map ΣA → Σ ∩ H̃A we then obtain a morphism

(8.41.4) H1(Σ ∩ H̃A,Λ)→ H1(ΣA,Λ) ' Ind∆A

∆YU ,A
(Λ)(−1).
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That it is an isomorphism when (R) holds follows from 8.40 and the fact that when
(R) holds the map ΣA → Σ ∩ H̃A is an isomorphism. The last statement follows
from 8.36. �

8.42. Now let F be an injective sheaf in Uo
K,Fet

and consider the sheaf ψA(F )
on Uo

K,Fet
. Recall (see 7.11) that if F corresponds to an injective ∆–representation

M then ψA(F ) corresponds to the induced representation Ind∆
HA

(M |HA
). Consider

again the diagram

(8.42.1) Ũo
K,Fet

j̄−−−−→ Uo
K,et

ī←−−−− Y o
U,K,Fet

.

The group Hs(ŨK,Fet, ψA(j∗F )) is equal to

(8.42.2) Hs(H̃A,M).

The Leray spectral sequence corresponding to H̃A → HA gives a spectral sequence

(8.42.3) Hp(HA,H
q(Σ ∩ H̃A,M)) =⇒ Hp+q(H̃A,M),

which we can also write as

(8.42.4) Hp(HA,M ⊗Hq(Σ ∩ H̃A,Λ)) =⇒ Hp+q(H̃A,M),

since M is a flat Λ-module by 7.15.
In particular, for s = 1 we have H1(HA,M) = 0 since M is injective so we get

an isomorphism

(8.42.5) H1(H̃A,M) ' H0(HA,M ⊗H1(Σ ∩ H̃A,Λ)).

We then obtain a diagram

(8.42.6)

H1(H̃A,M) −−−−→ H0(∆A,M
IA ⊗ Ind∆A

∆YU,A
(Λ)(−1))x

H0(HA,M ⊗ IndHA

HA,Y
(Λ)(−1))

'
x

H0(HA,Y ,M(−1)).

If condition (R) holds then all these maps are isomorphisms.

8.43. Let F be an injective sheaf in X o
K

and consider the diagram

(8.43.1) X̃
oe∆+

K

j−−−−→ X
oe∆+

K

i←−−−− Y
oe∆+

K
.

Let

(8.43.2) ν
e∆+eX : X̃

oe∆+

K
→ X

e∆+

et , ν
e∆+

X : X
o e∆+

K
→ X

e∆+

et , ν
e∆+

Y : Y
o e∆+

K
→ X

e∆+

et

be the projections.

Lemma 8.44. We have canonical isomorphisms

Rsν
e∆+eX∗Ψae∆+(j∗F ) =


ν

e∆+

X∗Ψae∆+(F ) if s = 0,

ν
e∆+

Y ∗ Ψae∆+(i∗F )(−1) if s = 1,

0 if s > 1,
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and
Rtν

e∆+

Y ∗ Ψae∆+(i∗F ) = 0

for t > 0.

Proof. Fix [r] ∈ ∆̃
+
. The restriction ofRsν

e∆+eX∗Ψae∆+(j∗F ) to the [r]-component

of X
e∆+

et is the sheaf Rsν eX∗Ψae∆+(j∗F )r where Ψae∆+(j∗F )r is the sheaf on X̃ o
K

asso-

ciated to the presheaf whose restriction to Ũo
K,Fet

is equal to

⊕A⊂{1,...,m},|A|=rψA(j∗FU ),

and
ν eX : X̃ o

K
→ Xet

is the natural morphism of topoi. By 6.9 the sheaf Rsν eX∗Ψae∆+(j∗F )r is equal to the

sheaf associated to the presheaf which to any étale U → X, satisfying the conditions
in 7.1, assigns

⊕A⊂{1,...,m},|A|=rH
s(H̃A,MU ),

where H̃A is as in 8.38 and MU denotes the ∆-representation corresponding to FU .
From this the case s = 0 follows immediately, and the vanishing for s > 1 follows
from 8.41 by a standard limit argument.

Similarly the sheaf Rtν
e∆+

Y ∗ Ψae∆+(i∗F )r is equal to the sheaf associated to the

presheaf which to U → X as above associates

⊕A⊂{1,...,m},|A|=rH
t(HA,Y ,MU ).

From this description, a limit argument again, and 7.18 it follows that

Rtν
e∆+

Y ∗ Ψae∆+(i∗F )r = 0

for t > 0.
Furthermore the maps in 8.42.6 and a limit argument using the fact that for

any geometric point x̄ → X condition (R) holds for Spec(OX,x̄ ⊗V K) yield the
isomorphism

R1ν
e∆+eX∗Ψae∆+(j∗F )r ' ν

e∆+

Y ∗ Ψae∆+(i∗F )(−1)r.

We leave to the reader the verification that these isomorphisms are compatible with
the simplicial structure, as r varies. �

Corollary 8.45. Let F be a sheaf of Λ-modules in X o
K
. Then there is a

canonical distinguished triangle in X
e∆+

et

(8.45.1)

Rν
e∆+

X∗Ψae∆+(F )→ Rν
e∆+eX∗Ψae∆+(j∗F )→ Rν

e∆+

Y ∗ Ψae∆+(i∗F )(−1)[−1]→ Rν
e∆+

X∗Ψae∆+(F )[1].

In particular, we obtain by normalization a distinguished triangle in Xet

(8.45.2)
RνX∗Ψa(F )→ Rν eX∗Ψa(j∗F )→ RνY ∗Ψa(i∗F )(−1)[−1]→ RνX∗Ψa(F )[1],

where

(8.45.3) ν eX : X̃ o
K
→ Xet, νX : X o

K
→ Xet, νY : Y o

K
→ Xet

are the projections.
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Proof. In the case when F is an injective sheaf of Λ-modules this follows from
8.44.

To show the general case, it suffices to construct the triangle for a bounded
below complex F • of injective sheaves in X o

K
, instead of just a single injective

sheaf. To handle this case, choose a bicomplex J•• of injectives in X̃ o
K

and a map
of bicomplexes j∗F • → J•• such that for every j the map j∗F j → Jj• is a quasi–
isomorphism. Let τ≥1ν eX∗Ψe∆+(J••) be the truncation with respect to the second
index. We then obtain from 8.44 a quasi–isomorphism

(8.45.4) τ≥1ν eX∗Ψae∆+(J••) ' νY ∗Ψae∆+(i∗F •)

defining the desired triangle 8.45.1. �

8.46. For any sheaf F of Λ–modules in X o
K

we obtain a diagram

(8.46.1) RΓ(X o
K
,Ψa(F ))

��

// RΓ(X o
K
, F ⊗ Φae∆+(OX o

K
))

��

RΓ(X̃ o
K
,Ψa(j∗F )) //

��

RΓ(X̃ o
K
, j∗F ⊗ Φae∆+(O fX o

K

))

��
RΓ(Y o

K
,Ψa(i∗F ))(−1)[−1]

+1

��

// RΓ(Y o
K
, i∗F ⊗ Φae∆+(OY o

K
))(−1)[−1],

+1

��

where the left triangle is obtained from 8.45.2, the right triangle is obtained from
8.34.2, and the horizontal arrows are the maps 8.34.7. It follows from the construc-
tion that this diagram commutes.

8.47. Let L be a locally constant constructible sheaf onXo
K

, and let L := uX∗L
denote the induced sheaf on X o

K
. Choose an injective resolution L → I•. For a

hypercover U· ∈ HR(X)′ such that each Un,K also satisfies the conditions of 7.1
with respect to the divisor D ∪ Y , we then have by 8.31.1 a distinguished triangle

(8.47.1) Ψ(I•|Uo
·,K

)→ Rj∗Ψ(I•|eUo
·,K

)→ i∗Ψ(I•|Uo
·,Y,K

)(−1)[−1]→ Ψ(I•|Uo
·,K

)[1]

on U·,K,et, where U·,Y denotes the base change U· ×X Y and I•|Uo
·,K

denotes the
pushforward of I• to Uo

·,K,Fet
.
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We obtain a diagram
(8.47.2)

hocolimRΓ(U·,K ,Ψ(I•|Uo
·,K

)) ←−−−− hocolimRΓ(Uo
·,K ,Ψ(I•|Uo

·,K
))y y

hocolimRΓ(Ũ·,K ,Ψ(I•|eUo
·,K

)) ←−−−− hocolimRΓ(Ũo
·,K ,Ψ(I•|eUo

·,K
))y y

hocolimRΓ(U·,Y,K ,Ψ(I•|Uo
·,Y,K

)) ←−−−− hocolimRΓ(Uo
·,Y,K

,Ψ(I•|Uo
·,Y,K

))y y
hocolimRΓ(U·,K ,Ψ(I•|Uo

·,K
))[1] ←−−−− hocolimRΓ(Uo

·,K ,Ψ(I•|Uo
·,K

))[1],

where the columns are the distinguished triangles obtained from 8.47.1 and 8.45.2,
and the horizontal arrows are the morphisms obtained from 8.8.1, and the homotopy
colimits are taken over U· ∈ HR(X)′.

Proposition 8.48. The diagram 8.47.2 commutes.

Proof. Let pt denote the punctual topos, and let T denote the topos (pt∆)e∆+

.
So a Λ–module in T consists of a Λ–module Fn,m for every pair of objects [n] ∈ ∆

and [m] ∈ ∆̃
+

together with transition morphisms. We refer to Fn,m as the (n,m)-
component of F .

For a simplicial scheme Z· there is a canonical morphism of topoi

(8.48.1) q : Z e∆+

· → T.

For a sheaf F ∈ Z
e∆+

· we write Γ̃(F ) for q∗F and RΓ̃(F ) for Rq∗F . Taking the total
complex (in both the ∆–direction and ∆̃

+
–direction) defines a triangulated functor

(8.48.2) Tot : D(T,Λ)→ D(Λ).

The diagram 8.47.2 is obtained by applying Tot to a diagram in D(T,Λ).

Namely, we have complexes of sheaves Ψe∆+(I•) and Ψe∆+(I•) in Uo e∆+

·,K,Fet
and U

e∆+

·,K,et

respectively. The diagram 8.47.2 is then obtained by applying Tot to the diagram
(8.48.3)

hocolimRΓ̃(U·,K ,Ψe∆+(I•|Uo
·,K

)) ←−−−− hocolimRΓ̃(Uo
·,K ,Ψe∆+(I•|Uo

·,K
))y y

hocolimRΓ̃(Ũ·,K ,Ψe∆+(I•|eUo
·,K

)) ←−−−− hocolimRΓ̃(Ũo
·,K ,Ψe∆+(I•|eUo

·,K
))y y

hocolimRΓ̃(U·,Y,K ,Ψe∆+(I•|Uo
·,Y,K

)) ←−−−− hocolimRΓ̃(Uo
·,Y,K

,Ψe∆+(I•|Uo
·,Y,K

))y y
hocolimRΓ̃(U·,K ,Ψe∆+(I•|Uo

·,K
))[1] ←−−−− hocolimRΓ̃(Uo

·,K ,Ψe∆+(I•|Uo
·,K

))[1],

where the homotopy colimits are taken over U· ∈ HR(X)′.
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Choose a bicomplex J•• of injective objects in X̃ o
K

and a morphism I•| fX o
K

→
J•• such that for every j the map

(8.48.4) Ij → Jj•

is a quasi–isomorphism. For a hypercover U· ∈ HR(X)′ and for any j ≥ 0, the
complex in T

(8.48.5) Γ̃(Ũo
·,K,Fet

,Ψe∆+(Jj•|U·))

has (n,m)-component a complex computing the cohomology RΓ(Ũo
n,K,Fet

,Ψ(Ij)m).
Also choose a cofinal projective system of étale hypercovers {Uα

· } of X.
From 8.36 we have:

Lemma 8.49. There are canonical isomorphisms
(i) lim−→α

R0Γ(Ũαo
n,K,Fet

,Ψ(Ij |eUo
·,K

)m) ' lim−→α
Γ(Uαo

n,K,Fet
,Ψ(Ij)m),

(ii) lim−→α
R1Γ(Ũαo

n,K,Fet
,Ψ(Ij |eUo

·,K
)m) ' lim−→α

Γ(Y αo
n,K,Fet

,Ψ(Ij |Uo
·,Y,K

)m)(−1),

and
(iii) for any i > 1 we have

lim−→
α

RiΓ(Ũαo
n,K,Fet

,Ψ(Ij |eUo
·,K

)m) = 0.

Let Θ(Jj•)m denote the kernel of the map

(8.49.1) Ψ(Jj1)m → Ψ(Jj2)m

induced by the morphism Jj1 → Jj2. By the above we then have an exact sequence
(in the vertical direction) of complexes in T

(8.49.2) 0

��

0

��
lim−→α

Γ̃(Uαo
·,K,Fet

,Ψe∆+(I•)) //

��

0

��
lim−→α

Γ̃(Ũαo
·,K,Fet

,Ψe∆+(J•0))

��

// lim−→α
Γ̃(Uαo

·,K,Fet
, ,Θ(J••))

��

0

��

// lim−→α
Γ̃(Y αo

·,K,Fet
,Ψe∆+(i∗I•))(−1)

��
0 0.

A very similar argument can be carried out with the complexes Ψ(I•) and
Ψ(J••) (we leave the details to the reader). Let

(8.49.3) Θ(Jj•)m := Ker(Ψ(Jj1)m → Ψ(Jj2)m).
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We then also obtain an exact sequence of complexes in T

(8.49.4) 0

��

0

��
lim−→α

Γ̃(Uα
·,K,et

,Ψe∆+(I•)) //

��

0

��
lim−→α

Γ̃(Ũα
·,K,et

,Ψe∆+(J•0))

��

// lim−→α
Γ̃(Uα

·,K,et
,Θ(J••))

��

0 //

��

lim−→α
Γ̃(Y α

·,K,et
,Ψe∆+(i∗I•))(−1)

��
0 0

The construction of 8.8.1 gives isomorphisms between the individual terms of 8.49.1
and 8.49.4, and to prove 8.48 we have to check that in fact these maps give a
morphism of diagrams (for then the diagram 8.47.2 is obtained by taking total
complexes).

To prove that we in fact get a morphism of diagrams from 8.49.4 to 8.49.1, it
suffices to show that for every j ≥ 0, m ≥ −1, and n ≥ 0 the diagram

(8.49.5)

lim−→α
Γ(Uα

n,K,et
,Θ(Jj•)m) −−−−→ lim−→α

Γ(Y α
n,K,et

,Ψe∆+(i∗Ij)m)(−1)y y
lim−→α

Γ(Uαo
n,K,Fet

,Θ(Jj•)m) −−−−→ lim−→α
Γ(Y αo

n,K,Fet
,Ψe∆+(i∗I•)m)(−1)

commutes (the other parts of the verification that we get a map of diagrams from
8.49.4 to 8.49.1 are immediate). Equivalently we need to show that the diagram

(8.49.6)

lim−→α
H1(Uα

n,K,et
,Ψ(Ij)m) −−−−→ lim−→α

Γ(Y α
n,K,et

,Ψe∆+(i∗Ij)m)(−1)y y
lim−→α

H1(Uαo
n,K,Fet

,Ψ(Ij)m) −−−−→ lim−→α
Γ(Y αo

n,K,Fet
,Ψe∆+(i∗I•)m)(−1)

commutes, where the horizontal arrows are obtained from 8.49 and the vertical
arrows are given by 8.8.1. The sheaves Ψ(Ij)m and Ψ(Ij)m are by construction
direct sums of sheaves

(8.49.7) Ψ(Ij)m = ⊕ΨA(Ij)m, Ψ(Ij)m = ⊕ΨA(Ij)m,

and 8.49.6 is obtained by taking the direct sum of diagrams

(8.49.8)

lim−→α
H1(Uα

n,K,et
,ΨA(Ij)m) −−−−→ lim−→α

Γ(Y α
n,K,et

,Ψ
A e∆+(i∗Ij)m)(−1)y y

lim−→α
H1(Uαo

n,K,Fet
,ΨA(Ij)m) −−−−→ lim−→Γ(Y αo

n,K,Fet
,Ψ

A e∆+(i∗I•)m)(−1).
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The proof of 8.48 is then completed by showing that 8.49.8 commutes, which is
a straightforward verification (which we leave to the reader). This completes the
proof of 8.48, and hence also of 8.21 in the case of a divisor. �

8.50. To treat the case of a higher codimension inclusion i : Y ↪→ X we first
need some computations.

If L is a line bundle on X we define its first Chern class c1(L ) ∈ H2(X o
K
, µps)

as follows. Raising to the ps–th power induces an exact sequence

(8.50.1) 0→ µps → O∗
X o

K

ps

→O∗
X o

K
→ 0,

and we define c1(L ) to be the image of the class of L under the induced map

(8.50.2) H1(X,O∗
X)→ H1(X o

K
,O∗

X o
K

)→ H2(X o
K
, µps).

By 6.5 there is a canonical isomorphism H2(X o
K
, µps) ' H2(Xo

K,et
, µps) and it

follows from the definition that under this isomorphism c1(L ) is equal to the class
obtained from the Kummer sequence 0→ µps → Gm → Gm → 0.

Computation 8.51. Let X = Pn
V , and let D be the union of the standard

hyperplanes {xi = 0}. Let C · be the Cech complex computing the coherent coho-
mology of OX with respect to the standard covering. For any integer n, raising the
coordinates to the pn-th power defines a morphism

σn : Pn
V → Pn

V ,

which induces a morphism
σ∗n : C · → C ·.

The natural action of µd
pn on Pn

V induces an action of ∆∞ := Zp(1)d on lim−→n
C ·,

where the limit is taken with respect to the maps σ∗n. It follows from 3.10, that we
then have an almost isomorphism

RΓ(X o
K
,OX o

K
/ps) ' RΓ∆∞(lim−→C · ⊗V V /ps).

Since the natural map
V /ps → lim−→C · ⊗V V /ps

is a quasi-isomorphism, we conclude from (3.5 (i)) that there is an almost isomor-
phism

RΓ(X o
K
,OX o

K
/ps) ' (

•∧
Zd

p(−1))⊗ V /ps.

In the case when n = 1, let j : Gm ↪→ A1 be the natural inclusion, and let
i : Spec(V ) ∪ Spec(V ) ↪→ P1 be the inclusions of 0 and ∞. By 8.22 there is then a
distinguished triangle in D̃(XK)

(8.51.1) OXK
→ Rj∗OX o

K
→ i∗ODo

K
(−1)[−1]→ OXK

[1],

where D = D0

∐
D∞ ⊂ X denotes the inclusion Spec(V )

∐
Spec(V ) ↪→ P1 of 0

and∞. By the above computation we know thatH∗(XK , Rj∗OX o
K

) ' Λ•V /ps(−1)
(almost isomorphism). Looking at the long exact sequence corresponding to 8.51.1
one sees that H0(XK ,OX o

K
/ps) ' V /ps, H1(XK ,OX o

K
/ps) = 0, and

H2(XK ,OX o
K
/ps) ' V /ps(−1)

with generator the image under the boundary map of a generator ofH0(D0,K ,ODK
).

A straightforward verification shows that this generator is equal to −c1(OP1(1)).
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Computation 8.52. Let d ≥ 1 be an integer, and let X = Pd. Denote by
H0, . . . ,Hd the standard hyperplanes (so Hi is the locus of points where the i–th
coordinate is zero). For 0 ≤ i ≤ d let X o

K,i
denote the topos obtained by taking

D = H0 ∪ · · · ∪ Hi. We claim that then H∗(X o
K,i
,OX/p

s) is isomorphic to the

exterior algebra Λ•(V /ps)i(−1). This we prove by descending induction on i.
The case i = d was done in the preceding computation.
For the general case note that the distinguished triangle 8.22 induces a long

exact sequence
(8.52.1)
→ Hj(X o

K,i
,OX o

K
)→ Hj(X o

K,i+1
,OX o

K
)→ Hj−1(Pd−1−{i hyperplanes})(−1)→ .

Using this and also induction on d one obtains the general case.
Note in particular that for D = H0 we find that Hi(X o

K
,OX/p

s) = 0 for i > 0
and for i = 0 we get V /ps. Using this we can also compute the cohomology of
projective space Pd with D = ∅. We claim that in this case

(8.52.2) H∗(XK ,OX o
K
/ps) ' ⊕d

i=0V /p
s(−i) · ξi

where ξ ∈ H2(XK ,OX o
K
/ps)(1) denotes the Chern class of OX(1). This is proven

by induction on d, the case d = 0 being trivial. For general d, let Xo denote X−H
where H is a hyperplane so that by 8.22 we have a long exact sequence
(8.52.3)
· · · → Hi(XK ,OXK

/ps)→ Hi(X o
K
,OX o

K
/ps)→ Hi−1(HK ,OHK

/ps)(−1)→ · · · .

By the above we have Hi(X o
K
,OX o

K
/ps) = 0 for i > 0, and by the above the

boundary map

(8.52.4) Hi−1(H ,OHK
/ps)(−1)→ Hi+1(XK ,OXK

/ps)

is equal to i∗. Now we have i∗(ξj) = ξj+1. Indeed we have already shown that
i∗ agrees with the étale pushforward iet∗ for the inclusion of smooth divisors, so it
suffices to verify this formula in the étale theory and by the projection formula it
in turn suffices to show that i∗(1) = ξ which is true for example by [9, Cycle, 2.9].

Proposition 8.53. Let E be a vector bundle of rank r + 1 on X and let π :
Y = P(E ) → X be the corresponding projective bundle. Let D̃ ⊂ Y be the inverse
image of D, and for a decomposition D = E∪F let D̃ = Ẽ∪F̃ be the decomposition
obtained by taking inverse images of E and F . Let O(1) denote the tautological line
bundle on Y , and let ξ ∈ H2(Y 0, µps) denote the Chern class c1(O(1)). Then for
any integer s and sheaf L the cup product map

(8.53.1) ⊕r
i=0 ∪ξi :

r⊕
i=0

Hs−2i(X o
K
, L⊗JE)(−i)→ Hs(Y o

K
, π∗L⊗J eE)

is an almost isomorphism.

Proof. It suffices to prove the proposition after making an étale localization
on X. We may therefore consider the analogous statement for X the spectrum of a
strictly henselian local ring. In this case Y is isomorphic to X×Pr. In this case the
result follows from the computation 8.52 and the observation that if P denotes Pd

then H∗(Y o,J eE) ' JE⊗V H
∗(PK ,OPK

), which follows from a similar argument
to the one used in 8.52 using 3.16. �
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Corollary 8.54. With notation as in 8.53, the image of ξr under the map

(8.54.1) H2d(Y o
K
,OY /p

s)(d) π∗−−−−→ H0(X o
K
,OX o

K
/ps) ' V /psV

is equal to 1.

Proof. Everything we have done is functorial with respect to morphisms f :
(X ′, D′) → (X,D) such that f−1(D) ⊂ D′. After making a finite extension of
V , we may assume that there exists a section Spec(V ) → Xo. Base changing to
Spec(V ) it therefore suffices to consider the case when X = Spec(V ) and D is trivial
so Y = Pd. �

We can now finally prove 8.21 in general. Let i : Y ↪→ X be as in the theorem
and let X̃ denote the blow-up of X along Y . Let D̃ ⊂ X̃ be the inverse image of
D, and let E ⊂ X̃ be the inverse image of Y so we have a cartesian square

(8.54.2)

E
ĩ−−−−→ X̃

π

y yπ

Y
i−−−−→ X.

Let r + 1 denote the codimension of Y in X so that E is isomorphic to the
projective bundle associated to the rank r + 1–normal bundle NY/X on Y . Let
ξ ∈ H2r(Eo

K,et
,Z/ps(r)) denote the r-th power of the first Chern class of the tau-

tological line bundle on E = PY (NY/X). Since π∗ξ = 1 (this follows for example
from [24, VII.2.2.6]), the composite morphism

π∗(π∗(−) ∪ ξ) : RΓEY ,FY
(Y 0

K,et
, f∗u∗XL)→ RΓEY ,FY

(Y 0
K,et

, f∗u∗XL)

is the identity. Similarly, the morphism

π∗(π∗(−) ∪ ξ) : RΓ(Y o
K
, f∗L⊗JEY

)→ RΓ(Y o
K
, f∗L⊗JEY

)

is the identity.
By [24, VII.8.4.3], the two maps π∗i∗(−), ĩ∗(π∗(−) ∪ ξ)

RΓEY ,FY
(Y o

K,et
, f∗u∗XL)→ RΓEfX ,FfX (X̃o

K,et
, π∗u∗XL)(r + 1)[2(r + 1)]

are equal. Since the transformations σY and σX commute with ĩ∗ by the case of a
smooth divisor already treated we get that π∗σX(i∗−) = ĩ∗(π∗(σY (−)) ∪ ξ). Since
π∗π

∗ = id on RΓ(X o
K
, L⊗JE) we can apply π∗ to obtain

(8.54.3) σX(i∗−) = π∗ĩ∗(π∗(σY (−)) ∪ ξ).

We then find that

(8.54.4)
σX(i∗−) = π∗ĩ∗(π∗(σY (−)) ∪ ξ)

= i∗π∗(π∗(σY (−)) ∪ ξ)
= i∗σY (−).

This completes the proof of 8.21. �

8.55. The next step in the proof of 6.16 is to prove some facts about the
behavior of cohomology under blowups of the boundary. So let D1, D2 ⊂ D be two
smooth divisors meeting tranversally, and let π : X̃ → X be the blow-up of their
intersection. Let D̃ ⊂ X̃ be the inverse image of D. The subscheme D̃ ⊂ X̃ is also
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a divisor with simple normal crossings. In fact, D̃ is equal to the union of the strict
transforms of the components of D together with the exceptional divisor N ⊂ X̃.

Now let D = E ∪ F be a decomposition of the divisor D such that D1 ∈ E

and D2 ∈ F , and let D̃ = E1 ∪ F1 be the decomposition obtained by taking E1

equal to the union of the strict transforms of the divisors in E together with N ,
and let D̃ = E2 ∪ F2 be the decomposition obtained by taking E2 to be the union
of the strict transforms of the components in E (so N ⊂ F2). In X o

K
we then have

morphisms

(8.55.1) π∗JE →JE2 ←JE1 .

Proposition 8.56. Let L be a sheaf of flat Λ-modules in X o
K

. If π : X̃ o
K
→X o

K
is the induced morphism of topoi and νX : X o

K
→ Xet the projection, then the maps

(8.56.1) RνX∗L⊗JE → RνX∗Rπ∗π
∗L⊗JE2 ← RνX∗Rπ∗π

∗L⊗JE1 .

are all almost isomorphisms. In particular the natural maps

(8.56.2) H∗(X o
K
, L⊗JE)→ H∗(X̃ o

K
, π∗L⊗JE2)← H∗(X̃ o

K
, π∗L⊗JE1)

are all almost isomorphisms.

Proof. We may work étale locally on X, and hence can assume that X =
Spec(V [X1, . . . , Xr, X, Y ]) where D is defined by (X1 · · ·XrXY ) and X̃ is the blow-
up of the ideal (X,Y ) with D1 = (X) and D2 = (Y ). We can further assume that
E = D1 and by the projection formula that L is the trivial sheaf.

Write R = V [X1, . . . , Xr, X, Y ] and

(8.56.3) X̃ = Proj(R[U, V ]/XV = Y U)

and let U1 ⊂ X̃ be the open set

Spec(R[u]/X = Y u) ' Spec(V [X1, . . . , Xr, Y, u])

and let U2 be the other open set

U2 = Spec(R[v]/Xv = Y ) ' Spec(V [X1, . . . , Xr, X, v]).

Let Ri denote the coordinate ring of Ui and let R12 denote the coordinate ring of
the intersection U1 ∩ U2. Let R∞, Ri∞ and R12∞ be the rings obtained by taking
all the pn–th power roots of the variables (n ≥ 1), and let Ji,∞ ⊂ Ri,∞ be the ideal
defined by the roots of the variable X on U2 and the variables Y and u on U1 (the
inverse image of D1). Also let J∞ ⊂ R∞ be the ideal defined by the roots of X.
The ideals Ji,∞ define the same ideal in R12,∞ which we denote simply by J12,∞.
Also define Ii,∞ ⊂ Ri,∞ to be the unit ideal on U2 and the ideal defined by the
pn–th roots of u on U1 (the strict transform of D1). The ideals Ii define the same
ideal in R12,∞ which we denote by I12,∞ (the unit ideal).

Note that the automorphism groups of Uo
i,∞ (resp. Uo

12,∞, Spec(R∞)o) over
Uo

i (resp. Uo
12, Spec(R)o) are all isomorphic via the natural maps. Call this group

∆. Then the cohomology of JE is given by H∗(∆, J∞), the cohomology of JE1 is
given by the cohomology H∗(∆, J1,∞⊕J2,∞ → J12,∞), and the cohomology of JE2

is given by H∗(∆, I1,∞ ⊕ I2,∞ → I12,∞). Then the lemma follows from observing
that the natural maps

(8.56.4) J∞ → (J1,∞ ⊕ J2,∞ → J12,∞)
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and

(8.56.5) J∞ → (I1,∞ ⊕ I2,∞ → I12,∞)

are quasi–isomorphism which is an immediate verification. �

8.57. The analogous result also holds for étale cohomology. Consider again the
commutative diagram

(8.57.1)

X − E jE−−−−→ X

jF

x xjF

X −D jE−−−−→ X − F.
Let L be a locally constant constructible sheaf on X −D. Set M = RjE∗jF !L. On
X̃ we can then also consider M1 = RjE1∗jF1!π

∗L and M2 = RjE2∗jF2!π
∗L. We

then have maps

(8.57.2) π∗M →M2 ←M1.

Proposition 8.58. The induced maps

(8.58.1) M → Rπ∗M2 ← Rπ∗M1

are isomorphisms.

Proof. By the proper base change theorem [1, XII.5.1] it suffices to show that
for any geometric point x̄→ X with e : Nx̄ = X̃ ×X x̄→ X̃ the fiber, the maps

(8.58.2) Mx̄ → H∗(Nx̄, e
∗M2)← H∗(Nx̄, e

∗M1)

are isomorphisms. This is clear if x̄ has image in the complement of D1 ∩ D2 so
it suffices to consider the case when x̄ has image in D1 ∩ D2. In this case Nx̄ is
isomorphic to P1, Mx̄ = 0, and e∗M2 is also trivial. Thus the only issue is e∗M1.

The pair (X,D) is étale locally isomorphic to X1 × A2 together with a divisor
D′ ⊂ X1 such that D1 = X1 × A1 × {0}, D2 = X1 × {0} × A1, and D = D1 ∪
D2 ∪ D′ × A2. Furthermore, étale locally on X the sheaf L is isomorphic to the
sheaf associated to a representation of Ẑ(1)r (the Galois group of the extension of
X obtained by taking roots of the components of the divisor D). By considering
the distinguished triangles obtained from filtering L it suffices to consider the case
when L is a simple sheaf, and hence of the form Lµ for some character µ of Ẑ(1)d

(notation as in 3.5). Furthermore, by the projection formula one reduces to the case
when L is obtained by pullback via the second projection X1 ×G2

m → G2
m from a

rank 1 sheaf on G2
m. By the proper base change theorem this reduces the proof to

the case when X = P1 × P1 with divisor D = {0× P1,P1 × 0,∞× P1,P1 ×∞} and
D1 =∞× P1 and D2 = P1 ×∞.

With these assumptions, consider first the case of the constant sheaf Λ. The
exceptional fiber e : N ↪→ X̃ is equal to P1 and we can compute the pullback
e∗jE1!RjF1∗Λ explicitly. Indeed let X ′ denote X − E1 and consider the diagram

(8.58.3)

X ′ −N ∪ F1
a−−−−→ X ′ − F1

b−−−−→ X ′

e

x xe

N − {0,∞} j0−−−−→ N − {∞}.
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Then e∗jE1!RjF1∗Λ is isomorphic to the extension by zero along N −∞ ↪→ N of
e∗Rb∗Ra∗Λ. By the proper base change theorem we have e∗Rb∗Ra∗Λ ' Rj0∗e∗Ra∗Λ.
By cohomological purity [1, XVI.3.9] there is a distinguished triangle on X ′ − F1

(8.58.4) · · · → Λ→ Ra∗Λ→ e∗Λ(−1)[−1]→ · · ·

which upon applying e∗ gives a distinguished triangle on N − {0,∞}

(8.58.5) · · · → Λ→ e∗Ra∗Λ→ Λ(−1)[−1]→ · · · .

Applying j∞! and Rj0∗ we obtain a distinguished triangle on N

(8.58.6) · · · → j∞!Rj0∗Λ→ e∗jE1!RjF1∗Λ→ j∞!Rj0∗Λ(−1)[−1]→ · · · ,

where j0 and j∞ are the inclusions of the complements of the points 0,∞ ∈ P1

respectively. Thus it suffices to show that H∗
c (A1, Rj0∗Λ) is zero. For this consider

again the distinguished triangle on A1 (where i : {0} ↪→ A1 is the inclusion)

(8.58.7) Λ→ Rj0∗Λ→ i∗Λ(−1)[−1]→ Λ[1].

Consideration of the associated long exact sequence then gives the result.
For the case of a general sheaf L, we show that Hi(Nx̄, e

∗M1) is zero by induc-
tion on i. For the base case we take i = −1 where the result is vacuous.

For the inductive step, fix i and assume that Hj(Nx̄, e
∗M1) = 0 for j < i

and any locally constant constructible sheaf L on X − D. We then show that
Hi(Nx̄, e

∗M1) = 0. By the same argument used above it suffices to consider the
case when L has rank 1. Let N be an integer such that the pullback of L under the
map ρ : G2

m → G2
m given by multiplication by N on each factor is trivial. Then we

get an inclusion
L ↪→ ρ∗Λ

giving a short exact sequence

0→ L→ ρ∗Λ→ Q→ 0.

This short exact sequence induces a distinguished triangle

RjE1∗jF1!π
∗L→ RjE1∗jF1!π

∗ρ∗Λ→ RjE1∗jF1!π
∗Q→ RjE1∗jF1!π

∗L[1]

and hence an exact sequence

Hi−1(Nx̄, e
∗RjE1∗jF1!π

∗Q)→ Hi(Nx̄, e
∗RjE1∗jF1!π

∗L)→ Hi(Nx̄, e
∗RjE1∗jF1!π

∗ρ∗Λ).

Since Hi−1(Nx̄, e
∗RjE1∗jF1!π

∗Q) = 0 by the induction hypothesis it therefore suf-
fices to consider L = ρ∗Λ.

Let ρ : P1 × P1 → P1 × P1 also denote the map raising the coordinates to the
N–th power. Then there is a commutative diagram

(8.58.8)

G2
m −−−−→ P̃1 × P1 π−−−−→ P1 × P1

ρ

y yρ

yρ

G2
m −−−−→ P̃1 × P1 π−−−−→ P1 × P1.

Using this one we are then reduced to the case of the constant sheaf Λ which was
already shown. �
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8.59. We apply all this to complete the proof of 6.16 as follows. Let (X,D)
be as in 8.2. Let Y be the blow-up of X × X along the intersections Di × Di of
the divisors Di ×X and X ×Di. Then the diagonal map X → X ×X induces a
canonical morphism i : X ↪→ Y such that D meets the boundary divisor DY of Y
(the inverse image of D ×X ∪X ×D) transversally. Let π : Y → X ×X be the
projection. Let DY = E1 ∪ F1 be the decomposition obtained by taking E1 equal
to the union of the strict transforms of the divisors X ×Di, and let DY = E2 ∪ F2

be the decomposition obtained by taking E2 equal to the union of the exceptional
divisors with the strict transforms of the X × Di. Then cup product for étale
cohomology is given by the composite

(8.59.1)
RΓ(Xo

K
, L)⊗RΓc(Xo

K
, L∗) ' RΓE1,F1(Y

o
K
, L� L∗)

' RΓE2,F2(Y
o
K
, L� L∗)

i∗→ RΓc(Xo
K
,End(L)),

where L � L∗ denotes the pullback to Y of the sheaf pr∗1L ⊗ pr∗2L
∗ on X × X.

In other words, let δet ∈ H2d
F2,E2

(Y o
K
, L∗ � L)(d) denote the class i∗(1), where 1 ∈

H0(Xo
K
,End(L)) is the class corresponding to the identity map L → L. Then the

Poincaré duality pairing

RΓ(Xo
K
, L)⊗RΓc(Xo

K
, L∗)→ Z/pr(−d)[−2d]

is given by the composite

RΓ(Xo
K
, L)⊗RΓc(Xo

K
, L∗) ' RΓE1,F1(Y

o
K
, L� L∗)

' RΓE2,F2(Y
o
K
, L� L∗)

∪δet→ RΓc(Y o
K
,Z/(pr))(d)[2d]

tr→ Z/pr(−d)[−2d].

Similarly, the Poincaré duality pairing

RΓ(X o
K
, L⊗ OX o

K
)⊗RΓ(X o

K
, L∗ ⊗JX)→ V /(pr)(−d)[−2d]

is given by the composite

RΓ(X o
K
, L⊗ OX o

K
)⊗RΓ(X o

K
, L∗ ⊗JX) ' RΓ(Y o

K
, L� L∗ ⊗JE1)

' RΓ(Y o
K
, L� L∗ ⊗JE2)∪δ→ RΓ(Y o
K
,JY o

K
)(d)[2d]

tr→ V /pr(−d)[−2d],

where δ ∈ H2d(Y o
K
, L∗�L⊗JF2)(d) is the class i∗(1). If σ : RΓF2,E2(YK ,Z/pr)→

RΓ(Y o
K
,JF2) is the transformation 8.19.2 we have by 8.21 that σ(δet) = δ. Also

there is a similar description of the Poincaré duality pairings for cohomology with
partial compact support.



86 MARTIN C. OLSSON

Now since the trace map in either theory has the property that it sends the
cohomology class of a point in the interior to 1, the diagram

RΓE,F (Xo
K
, L)⊗ V /(pr)×RΓF,E(Xo

K
, L∗)⊗ V /(pr) ∪ //

σ

��

RΓc(Xo
K
⊗ V /(pr)

tr

��
V /(pr)(−d)[−2d]

RΓ(X o
K
, L⊗JE)×RΓ(X o

K
, L∗ ⊗JF ) ∪ // RΓ(X o

K
,J )

tr

OO

commutes (somewhat abusively we say that σ is an “isometry”).
Let γ : RΓ(X o

K
, L⊗JE)→ RΓE,F (Xo

K
, L)⊗ V /pr denote the adjoint of σ.

Lemma 8.60. The diagram
(8.60.1)

RΓ(X o
K
, L⊗JE)⊗RΓ(X o

K
, L∗ ⊗JF )

p∗1(−)⊗p∗2(−)//

γ⊗γ

��

RΓ(Y o
K
, L� L∗ ⊗JE2)

γ

��
RΓE,F (Xo

K
, L)V /pr ⊗RΓF,E(Xo

K
, L∗)V /pr

p∗1(−)⊗p∗2(−)// RΓE2,F2(Y
o
K
, L� L∗)V /pr

commutes.

Proof. Let ρ1 (resp. ρ2) denote the composite morphism

ρ1 := (p∗1(−)⊗ p∗2(−)) ◦ (γ ⊗ γ) (resp. ρ2 := γ ◦ (p∗1(−)⊗ p∗2(−))).

Let τi denote the composite morphism

(RΓ(X o
K
, L⊗JE)⊗RΓ(X o

K
, L∗ ⊗JF ))⊗ (RΓF,E(Xo

K
, L∗)⊗RΓE,F (Xo

K
, L))yρi⊗(p∗1(−)⊗p∗2(−))

RΓE2,F2(Y
o
K
, L� L∗)V /pr ⊗RΓF2,E2(Y

o
K
, L∗ � L)yPoincaré duality

V /pr(−2d)[−4d].

By duality, to show that ρ1 = ρ2 it suffices to show that τ1 = τ2. This follows from
the definition of γ, which implies that both τ1 and τ2 are equal to the composite

(RΓ(X o
K
, L⊗JE)⊗RΓ(X o

K
, L∗ ⊗JF ))⊗ (RΓF,E(Xo

K
, L∗)⊗RΓE,F (Xo

K
, L))yid⊗id⊗σ⊗σ

RΓ(X o
K
, L⊗JE)⊗RΓ(X o

K
, L∗ ⊗JF )⊗RΓ(X o

K
, L∗ ⊗JF )⊗RΓ(X o

K
, L⊗JE)y(α,β,γ,δ) 7→〈α,γ〉·〈β,δ〉

V /pr(−2d)[−4d],

where the last map is the map induced from the Poincaré duality pairings

RΓ(X o
K
, L⊗JE)⊗RΓ(X o

K
, L∗ ⊗JF )→ V /pr(−d)[−2d],
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and
RΓ(X o

K
, L∗ ⊗JF )⊗RΓ(X o

K
, L⊗JE)→ V /pr(−d)[−2d].

�

8.61. It follows that the diagram

RΓ(X o
K
, L⊗JE)⊗RΓ(X o

K
, L∗JF ) γ⊗γ //

p∗1(−)⊗p∗2(−)

��

(RΓE,F (Xo
K
, L)⊗RΓF,E(Xo

K
, L∗))V /pr

(p∗1(−)⊗p∗2(−))∪δet

��
RΓ(Y o

K
, L� L∗ ⊗JE2)

γ

��
∪δ

))

RΓc(Y o
K
,Z/pr)V /pr (d)[2d]

RΓE2,F2(Y
o
K
, L� L∗)V /pr

∪δet

22fffffffffffffffffffffff

RΓ(Y o
K
,JY o

K
)(d)[2d]

γ

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

commutes, which implies that the diagram

RΓ(X o
K
, L⊗JE)⊗RΓ(X o

K
, L∗JF ) γ⊗γ //

duality ,,XXXXXXXXXXXXXXXXXXXXXXXXXX
RΓE,F (Xo

K
, L)V /pr ⊗RΓF,E(Xo

K
, L∗)V /pr

duality

��
V /pr(−d)[−2d]

commutes (γ is an isometry).
Since γ ◦ σ is the identity, it follows that both σ and γ are isomorphisms. This

completes the proof of 6.16.

9. The topos X̂ o
K

9.1. Let (X,D) be as in 6.1 and assume in addition that X is proper over
V . Let X̂ denote the formal scheme over Spf(V ) obtained by taking the p–adic
completion of X and define another site Ŝ as follows. The objects of Ŝ are pairs
(U,W ) where U → X̂ is an étale morphism of formal schemes with U affine, and
W → Spec(Γ(U,OU ) ⊗V K)o is a finite étale morphism of schemes. Morphisms
(U ′,W ′)→ (U,W ) in Ŝ are commutative diagrams

(9.1.1)

W ′ f−−−−→ Wy y
U ′

g−−−−→ U,

where g is an X̂–morphism. A collection of morphisms {(Ui,Wi) → (U,W )} is a
covering if the collections {Ui → U} and {Wi → W} are étale coverings in the
usual sense. We denote by X̂ o

K
the associated topos. There is a sheaf of rings O cX o

K

in X̂ o
K

given by

(9.1.2) (U,W ) 7→ Γ(W,OW ),
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where W denotes the normalization of Spec(Γ(U,OU )) in W . More generally, for
any decomposition D = E∪F of the boundary we have a sheaf of ideals J bE ⊂ O cX o

K

which to any (U,W ) associates the ideal of the fiber product (W ×Spec(Γ(U,OU ))

Ê)red ⊂W , where Ê ⊂ X̂ denotes the p-adic completion of E.

9.2. There is a natural morphism of topoi

(9.2.1) p : X̂ o
K
→X o

K

induced from the morphism of sites S → Ŝ sending a pair (U,W ), with U affine,
to the p–adic completion Û with the morphism W ×U Spec(Γ(Û ,ObU ) ⊗V K)o →
Spec(Γ(Û ,ObU ) ⊗V K)o. For any decomposition D = E ∪ F there is a natural
morphism p∗JE →J bE inducing a morphism

(9.2.2) JE → Rp∗J bE .
Note also that the map U 7→ (U,Spec(Γ(U,OU ))o

K
) induces a morphism of sites

Et(X̂)→ Ŝ inducing a morphism of topoi ν bX : X̂ o
K
→ X̂et sitting in a commutative

diagram

(9.2.3)

X̂ o
K

p−−−−→ X o
K

νcX
y yνX

X̂et −−−−→ Xet.

For any affine U = Spf(R) ∈ Et(X̂) there is also a canonical morphism of topoi

(9.2.4) εU : X̂ o
K
→ Spec(R⊗K)o

Fet

induced by the morphism of sites sending W → Spec(R⊗K)o to (U,W ) ∈ Ŝ .

Proposition 9.3. Let L be a locally constant sheaf of Z/(pr)-modules on Xo
K,et

,

and let L (resp. L̂ ) denote the induced sheaf on X o
K

(resp. X̂ o
K

). Then the natural
map

(9.3.1) p∗RνX∗L ⊗JE → Rν bX∗L̂ ⊗J bE
is an almost isomorphism and for every i the sheaves

RiνX∗(L ⊗JE) and Riν bX∗L̂ ⊗J bE
are almost isomorphic to coherent sheaves.

Proof. We may work étale locally on X so can assume that X = Spec(R)
and that there is a formally étale morphism Spec(R)→ Spec(V [X1, . . . , Xd]) as in
2.16.1. Let R̂ denote the p–adic completion of X, R∞ the extension of R obtained
by taking all the pn–th roots of the variables Xi, and let R̂∞ denote the p–adic
completion of R∞ ⊗R R̂. Let J∞ ⊂ R∞ denote the ideal generated by the roots of
the element

∏
i∈E Xi. Let ∆∞ ' Zp(1)d denote the Galois group of R∞ over R,

which is also the Galois group of R̂∞ over R̂. Then by 3.10 we may assume that L
is obtained from a representation of ∆∞ and then the morphism 9.3.1 is identified
in D̃(R̂) with the morphism of complexes of quasi–coherent sheaves associated to
the morphism of complexes of R̂–modules

(9.3.2) RΓ∆∞(L⊗ J∞)⊗R R̂→ RΓ∆∞(L⊗ J∞ ⊗R∞ R̂∞).



ON FALTINGS’ METHOD OF ALMOST ÉTALE EXTENSIONS 89

The proposition therefore follows from 3.12. �

Corollary 9.4. For any locally constant sheaf of Z/(pr)–modules L in X o
K

the natural map

(9.4.1) H∗(X o
K
,L ⊗JE)→ H∗(X̂ o

K
, p∗L ⊗J bE)

is an almost isomorphism.

Proof. Combine 9.3 with Grothendieck’s comparison theorem [11, III.5.1.2].
�

10. An aside on Galois cohomology

In order to compare étale cohomology to crystalline cohomology it is neces-
sary to compute global cohomology using group cohomology. This is a standard
application of simplicial techniques so we just sketch the necessary details here.

Let ∆ denote the standard simplicial category of finite order sets with order
preserving morphisms.

10.1. Let us first recall the standard complex representing group cohomology.
Let X be a connected normal scheme and let η : Spec(Ω) → X be a geometric
point mapping to the generic point. Denote by ∆ the fundamental group of X with
respect to the base point η. Then the topos XFet is equivalent to the category of
(discrete) sets with continuous action of the group ∆. It follows that for an abelian
sheaf in XFet the cohomology groups H∗(XFet, L), or better the complex RΓ(L),
can be computed as follows.

Write also L for the continuous ∆–representation corresponding to the sheaf
L. For an integer n let Cn(∆, L) denote the group

(10.1.1) Cn(∆, L) := {continuous ∆–equivariant maps ∆n+1 → L},

where ∆ acts on ∆n+1 via the diagonal action on the left. For any morphism
δ : [n]→ [m] there is an induced map

(10.1.2) ∆m+1 = Hom([m],∆)δ∗→Hom([n],∆) = ∆n+1

which induces a map δ∗ : Cn(∆, L) → Cm(∆, L). In this way [n] 7→ Cn(∆, L)
becomes a cosimplicial abelian group and we define C•(∆, L) to be the total complex
of this cosimplicial group. It is well-known that this complex C•(∆, L) computes
the group cohomology of L (see for example [44, 2.2]).

If L• is a complex of ∆–modules, then we can apply the C•(∆,−) to each Li

to obtain a bicomplex. We denote by C•(∆, L•) the resulting total complex. Note
that there is a canonical map of complexes L∆ → C•(∆, L•).

10.2. The advantage of this construction is that it is functorial. Let f : Y → X
be a morphism of connected normal schemes and ε : Spec(Ω)→ Y a lifting of η to
Y . If ∆Y (resp. ∆X) denotes the fundamental group of Y (resp. X) with respect
to the given geometric points, then there is an induced morphism ∆Y → ∆X of
topological groups. This morphism induces a map

(10.2.1) f∗ : Cn(∆X , L)→ Cn(∆Y , L)

compatible with the cosimplicial structure. The resulting map of complexes f∗ :
C•(∆X , L)→ C•(∆Y , L) represents the pullback morphism on cohomology.
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10.3. More generally, let X = X1

∐
· · ·

∐
Xr be a disjoint union of connected

normal schemes and assume that for each i we are given a geometric generic point
ηi : Spec(Ω) → Xi. We then define C•(∆, L) to be the product of the complexes
C•(∆Xi

, L). This is again functorial with respect to morphisms of pointed schemes.
A convenient way to deal with non–connected schemes is as follows. If X is a

disjoint union of normal schemes as above define a base point for X to be a disjoint
union of geometric points E =

∐r
i=1 Spec(Ω) with a morphism of schemes E → X

such that for each connected component Xi of X there exists a unique point of E
mapping to the generic point of Xi. Then we can define C•(∆, L) using E and this
complex is functorial with respect to commutative diagrams

(10.3.1)

EY −−−−→ Yy y
EX −−−−→ X.

In particular, if U· is a simplicial scheme such that each Un is a disjoint union of
normal schemes and E· → U· is a morphism of simplicial schemes such that for
every n the morphism En → Un is a base point, then we obtain a cosimplicial
complex C•(U·, L).

If X =
∐
Xi is a disjoint union of normal schemes as above and E → X

is a base point, we define a Galois module on X to be the data of a continuous
representation of each π1(Xi) (with respect to the base point given by E). For such
a module L we can then define C•(∆, L)

10.4. The main example we will consider is the following. Let X/V be a smooth
proper geometrically connected V –scheme andD ⊂ X a divisor with relative normal
crossings. As usual we write Xo for X −D and for any X–scheme U we write Uo

for U ×X Xo. Fix a geometric point Spec(Ω) → X mapping to the generic point
of X. Let U· → X be a smooth hypercover by affine schemes such that for every
n the scheme Un is a disjoint union of open subschemes of X and such that each
Uo

n,K
is a K(π, 1). Let π0(Un) denote the set of connected components of Un,K .

The set of connected components is functorial so we obtain a simplicial set π0(U·),
and since each connected component of Un is an open subset there is a canonical
base point Spec(Ω)π0(U·) → U·. Thus for a sheaf L on Uo

·,Fet we obtain a complex
C•(U·, L). We write GC(U·, L) for the associated simple complex. If L is obtained
from a locally constant constructible sheaf on Xo

K
then since each Uo

n,K
is a K(π, 1)

this complex computes H∗(Xo
K,et

, L).

10.5. With U· as in the previous paragraph, we will also need to consider the p–
adic completion U∧· of U·. The scheme U∧n is the spectrum of the p–adic completion
of the coordinate ring of Un. Let Ω̂ be the p–adic completion of the field Ω. Then for
any connected component P of U∧n there exists a unique morphism Spec(Ω̂) → P
such that the diagram

(10.5.1)

Spec(Ω̂) −−−−→ Py y
Spec(Ω) −−−−→ X
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commutes. We therefore also obtain a base point E· → U∧· . For a sheaf L on U∧·,Fet

we can then define the complex GC(U∧· , L) using this base point.
In what follows, we usually omit the initial choice of base point from the dis-

cussion. The careful reader should make the straightforward verification that all
the results are independent of the choice of the geometric generic point of X.

Remark 10.6. When dealing with algebraic spaces or Deligne–Mumford stacks,
one must take extra care in dealing with the choice of base point as one cannot work
Zariski topology and instead must work with the étale topology. The necessary
technicalities for dealing with this problem are discussed in [41, §4].

11. Fontaine’s big rings

11.1. Let R be a V –algebra which is an integral domain. Choose an alge-
braic closure Frac(R) ↪→ Ω and assume that Frobenius on R/pR is surjective and
that Spec(R/pR) is connected and nonempty. Then Fontaine’s theory gives rings
Acris(R) and Bcris(R) defined as follows. First set

(11.1.1) SR := lim←−R/pR

where the projective limit is taken with respect to the Frobenius morphism on R/pR
(SR is the perfection of R/pR). Since SR is perfect, the ring of Witt vectors W (SR)
has a canonical lift of Frobenius. An element x ∈ W (SR) can be represented by
a vector (x0, x1, x2, . . . ) where each xi = (xi0, xi1, . . . ) is an infinite vector with
xij ∈ R/pR and such that xp

i(j+1) = xij . There is a natural map

(11.1.2) θ : W (SR) −→ R̂

defined by sending x as above to

(11.1.3) θ(x) = lim−→
m

(x̃pm

0m + px̃pm−1

1m + · · ·+ pmx̃mm),

where x̃ij ∈ R̂ is any lift of xij . Here R̂ denotes the p–adic completion of R.
The assumption that Frobenius on R/pR is surjective ensures that the map θ is
surjective [49, A1.1].

For n ≥ 0 we write Wn(SR) for the ring of Witt vector of length n+ 1.
We set J = Ker(θ) and define Acris(R) to be the p–adic completion of the

divided power envelope DJ(W (SR)). We thus obtain a diagram

(11.1.4)

Spec(R̂) θ−−−−→ Spec(Acris(R))y
Spec(R).

Let Fil·Acris(R) denote the filtration on Acris(R) obtained as the p–adic comple-
tion of the filtration on DJ(W (SR)) defined by the PD–ideals J [r] ⊂ DJ(W (SR)).
For an element α ∈ Fil1Acris(R) and an integer r ≥ 1 we write α[r] ∈ FilrAcris(R)
for the element obtained from the r-th divided power operation on J [1].

Choose elements εm ∈ R̂ with ε0 = 1, εpm+1 = εm, and ε1 6= 1. Let ε ∈ SR

denote the element obtained from the reductions of the εi, and let [ε] ∈W (SR) be
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the Teichmuller lift of ε. Set πε := [ε]− 1 ∈ W (SR). Then πε ∈ Fil1Acris(R) so we
can define

(11.1.5) t = log([ε]) =
∑
m≥1

(−1)m−1(m− 1)!π[m]
ε ∈ Acris(R).

Define

(11.1.6) Bcris(R)+ := Acris(R)⊗Q,

and

(11.1.7) Bcris(R) := Bcris(R)+[
1
t
].

In fact, by [49, A3.2] we have tp−1 ∈ pAcris(R) and therefore Bcris(R) = Acris(R)[1/t].
The element t ∈ Acris(R) lies in Fil1Acris(R) and we obtain a filtration FilBcris(R)

on Bcris(R) by declaring that 1/t has degree −1.
More canonically, we can describe this localization as follows. The group Zp(1)

is by definition the group of sequences (ζn)n≥0, where ζn is a pn–th root of 1 and
ζp
n+1 = ζn. The above construction then induces a homomorphism

(11.1.8) α : Zp(1)→ Acris(R)∗

whose image is contained in the elements mapping to 1 in R̂. Taking the logarithm
of this map we obtain a map

(11.1.9) β : Qp(1)→ Bcris(R)

whose image is the line spanned by t. This map induces for every i an isomorphism

(11.1.10) β⊗i : Bcris(R)(i)→ Bcris(R).

11.2. The ring Acris(R) has a lift of Frobenius ϕAcris(R) induced by the canon-
ical lift of Frobenius to W (SR). This lifting of Frobenius induces a semi–linear
automorphism ϕBcris(R) of Bcris(R) and preserves the filtration FilBcris(R).

Also define a second filtration I [·] on Acris(R) by

(11.2.1) I [r] := {x ∈ Acris(R)|ϕn(x) ∈ FilrAcris(R) for all n ≥ 0}.

Lemma 11.3. Let S be a p-adically complete and separated ring flat over Zp.
Let ξ ∈ S be an element whose image in S/pS is a regular element. Then
(i) ξ is a regular element of S.
(ii) The sequence

(11.3.1) 0 −−−−→ S〈u〉 ξ−u−−−−→ S〈u〉 u 7→ξ−−−−→ S ⊗Q
is exact where S〈u〉 denotes the free PD–polynomial algebra on one variable.

Proof. For (i) suppose β ∈ S is an element with ξβ = 0. We show by
induction on n that β is in pnS for all n. This implies that β = 0 since ∩n≥1p

nS = 0.
So assume that β ∈ pnS and write β = pnβ′. Then ξβ′ = 0 since S is flat over
Zp and pnξβ′ = ξβ = 0. Since ξ maps to a regular element in S/pS it follows that
β′ ∈ pS and therefore β ∈ pn+1S.

For (ii) note that the injectivity of multiplication by ξ−u on S〈u〉 follows from
(i): If f =

∑
i≥i0

aiu
[i] is an element with ai0 6= 0 then

(11.3.2) (ξ − u)f = ai0ξu
[i0] +

∑
i>i0

biu
[i]
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for some bi ∈ S. Since ξai0 6= 0 by (i) it follows that (ξ − u)f 6= 0.
For exactness in the middle of 11.3.1, suppose f =

∑
i aiu

[i] maps to zero in
S ⊗Q. We show by induction on the smallest integer n for which f can be written
as

(11.3.3) f = ai0u
[i0] + · · ·+ ai0+nu

[i0+n]

that f is in the image of (ξ−u). So consider f mapping to zero in S⊗Q and write
f in the form 11.3.3. Since f maps to zero in S ⊗Q we have

(11.3.4) ai0

ξi0

i0!
+ · · ·+ ai0+n

ξi0+n

(i0 + n)!
= 0

in S ⊗Q, and since S is flat over Zp this implies that

(11.3.5)
(i0 + n)!
i0!

ai0ξ
i0 + · · ·+ ai0+nξ

i0+n = 0

in S (note that the coefficients in this expression are integers). Since ξ is a regular
element in S this implies that

(11.3.6)
(i0 + n)!
i0!

ai0 = ξβ

for some β ∈ S. Furthermore, since ξ maps to a regular element in S/pS it follows
that β = (i0+n)!

i0!
β′ for some β′ ∈ S and hence by the flatness of S over Zp we have

ai0 = ξβ′ for some β′ ∈ S. Subtracting (ξ − u)β′u[i0] from f we are then reduced
to the case when f can be written in the form

(11.3.7) f = ai0u
[i0+1] + · · ·+ ai0+n−1u

[i0+1+n−1]

which by induction on n completes the proof of (ii). �

11.4. Choose νm ∈ R such that ν0 = −p and νp
m+1 = νm (note that this is

possible since R is a V –algebra). Let −p ∈ SR denote the element defined by
the reductions νm (mod p). Let [−p] ∈ W (SR) denote the Teichmuller lifting of
−p, and let ξ := [−p] + p. By [49, A2.2] the element ξ generates the kernel of
θ : W (SR)→ R̂ and ξ satisfies the assumptions of 11.3. In particular the sequence

(11.4.1) 0 −−−−→ W (SR)〈u〉 ξ−u−−−−→ W (SR)〈u〉 τ−−−−→ W (SR)⊗Q

is exact, where τ is the map sending u[i] to ξi/i!.
As before let DJ(W (SR)) denote the divided power envelope of the surjec-

tion W (SR) → R̂. By [49, A2.8] there exists a unique inclusion DJ(W (SR)) ↪→
W (SR)⊗Q whose composite withW (SR)→ DJ(W (SR)) is the inclusionW (SR) ↪→
W (SR) ⊗ Q, and via this inclusion DJ(W (SR)) is identified with the image of τ .
It follows from this that DJ(W (SR)) is p-torsion free, and that for every n there is
an exact sequence
(11.4.2)

0 −−−−→ W (SR)/pn〈u〉 ξ−u−−−−→ W (SR)/pn〈u〉 τ−−−−→ DJ(W (SR))/pn −−−−→ 0.
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Also for all integers r < n we obtain a commutative diagram with exact rows
(11.4.3)

0

��

0

��
0 // W (SR)/pn〈u〉

×pr

��

ξ−u // W (SR)/pn〈u〉 τ //

×pr

��

DJ(W (SR))/pn //

×pr

��

0

0 // W (SR)/pn+r〈u〉

��

ξ−u // W (SR)/pn+r〈u〉

��

τ // DJ(W (SR))/pn+r //

��

0

0 // W (SR)/pr〈u〉

��

ξ−u // W (SR)/pr〈u〉

��

τ // DJ(W (SR))/pr

��

// 0

0 0 0

By the snake lemma and the fact that the first two columns are exact we conclude
that the sequence
(11.4.4)

0 // DJ(W (SR))/pn ×pr

// DJ(W (SR))/pn+r // DJ(W (SR))/pr // 0

is also exact. As n varies the short exact sequences 11.4.4 form an exact sequence
of projective systems and passing to the limit we obtain an exact sequence

(11.4.5) 0 −−−−→ Acris(R)
×pr

−−−−→ Acris(R) −−−−→ DJ(W (SR))/pr −−−−→ 0.

In particular, we can rewrite 11.4.2 as
(11.4.6)

0 −−−−→ W (SR)/pn〈u〉 ξ−u−−−−→ W (SR)/pn〈u〉 τ−−−−→ Acris(R)/pn −−−−→ 0.

Lemma 11.5. For any integer n the natural map

(11.5.1) Wn(SR)⊗Wn(SV ) Acris(V )→ Acris(R)/pn+1

is an isomorphism.
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Proof. This follows from the exactness of 11.4.6 and consideration of the
commutative diagram

(11.5.2)

0y
W (SR)/pn+1〈u〉 a←−−−− Wn(SR)n ⊗Wn(SV ) Wn(SV )〈u〉

ξ−u

y yξ−u

W (SR)/pn+1〈u〉 b←−−−− Wn(SR)n ⊗Wn(SV ) Wn(SV )〈u〉

τ

y y
Acris(R)/pn+1 ←−−−− Wn(SR)⊗Wn(SV ) Acris(V )/pn+1y y

0 0,

where the maps labelled a and b are clearly isomorphisms. �

Lemma 11.6. For any integer n ≥ 0 the map

(11.6.1) R∧ → grn
FilAcris

Acris(R∧), f 7→ f · ξ[n]

is an isomorphism. In particular, the natural map

(11.6.2) grFilAcris
Acris(V )⊗V

∧ R∧ → grFilAcris
Acris(R∧)

is an isomorphism.

Proof. This is shown in [49, A2.11]. �

11.7. Since the image of ξ in Acris(V ) is in the divided power ideal of Acris(V ),
the map

(11.7.1) W (SV )/(p)→ Acris(V )/p

factors through W (SV )/(p, ξp) since ξp = p!ξ[p] = 0 in Acris(V )/p.

Lemma 11.8. Let i ∈ N be an integer. For any integer 1 ≤ j ≤ p the map

(11.8.1) × ξ[ip] : W (SV )/(p, ξj)→ J [ip]/(p, J [ip+j])

is an isomorphism, where J = Ker(θ : Acris(V )→ V
∧
).

Proof. The case j = 1 follows from [49, A2.9]. The general case follows by
induction and consideration of the diagrams
(11.8.2)

0 // W (SV )/(p, ξ)
ξj

//

'
��

W (SV )/(p, ξj+1)

��

// W (SV )/(p, ξj)

��

// 0

0 // J [ip]/(p, J [ip+1])
ξj

// J [ip]/(p, J [ip+j+1]) // J [ip]/(p, J [ip+j]) // 0.
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Here the top row is exact since ξ maps to a regular element in W (SV )/(p), and the
bottom row is exact since for j < p we have

ξ[ip+j] =
(ip)!

(ip+ j)!
ξj · ξ[ip],

and (ip)!/(ip+ j)! has p-adic valuation 0. �

Lemma 11.9. The map of W (SV )/(p, ξp)–modules

(11.9.1) ⊕i≥0W (SV )/(p, ξp)
⊕ξ[ip]

−−−−→ Acris(V )/p

is an isomorphism. In particular, Acris(V )/p is flat over W (SV )/(p, ξp).

Proof. The map is clearly surjective. That it is injective follows from the
preceding lemma. �

11.10. In what follows we will need to consider “almost mathematics” over the
ring Bcris(V ). Let Λ ⊂ Q be the subring Z[1/p], and let Λ+ := Λ ∩ Q>0. Fix a
sequence (τm)m≥0 of elements of V with τ0 = p and τp

m+1 = τm for all m ≥ 0.
We define τm := 0 for m < 0. Then for any n ∈ Z define λ1/pn to be the element
(am)m≥0 ∈ SV with

(11.10.1) am = τm+n.

Note that λp
1/pn = λ1/pn−1 .

Lemma 11.11. For every m ∈ Z the map

(11.11.1) × λ1/pn : SV → SV

is injective.

Proof. Let F : SV → SV be the Frobenius morphism (which is a bijection).
Then F (λ1/pn) = λ1/pn−1 so the diagram

(11.11.2) SV

·λ1/pn
// SV

SV

F

OO

·λ1/pn+1
// SV

F

OO

commutes. It follows that multiplication by λ1/pn is injective if and only if mul-
tiplication by either λ1/pn−1 or λ1/pn+1 is injective. It follows that it suffices to
consider the case n = 0. Now with the notation of [49, A2] we have −λ1 = −p,
and therefore the result in the case n = 0 follows from [49, A2.1]. �

11.12. For n ∈ Z, let δ1/pn ∈ W (SV ) denote the Teichmuller lifting [λ1/pn ] of
λ1/pn . Since the Teichmuller lifting is multiplicative we have

(11.12.1) δp
1/pn = σ(δ1/pn) = δ1/pn−1 ,

where σ : W (SV )→W (SV ) is the canonical lifting of Frobenius.
Since W (SV ) is p-torsion free and p-adically separated, it follows from 11.11

that

(11.12.2) × δ1/pn : W (SV )→W (SV )

is injective.
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For α ∈ Λ+, we define δα ∈ W (SV ) as follows. Write α = s/pn for some
s ∈ Z>0 and n ∈ Z, and define

(11.12.3) δα := δs
1/pn .

Note that if s = prs′ with (s′, p) = 1 then

(11.12.4) δs
1/pn = (δpr

1/pn)s′ = δs′

1/pn−r ,

which implies that this definition of δα is independent of how we write α as a
fraction s/pn.

Similarly we can define λα ∈ SV for any α ∈ Λ+. Note that since δ1/pn (resp.
λ1/pn) is not a zero divisor in W (SV ) (resp. SV ), the element δα (resp. λα) is not
a zero divisor in W (SV ) (resp. SV ) either.

Lemma 11.13. For every α, β ∈ Λ+ we have λα ·λβ = λα+β and δα ·δβ = δα+β.

Proof. Since the Teichmuller lifting is multiplicative, it suffices to prove the
statement about the λ’s. Write α = s/pm and β = t/pm (note that without loss of
generality we may assume that the denominators are the same). Then by definition

(11.13.1) λα = λs
1/pm , λβ = λt

1/pm , and λα+β = λs+t
1/pm

which implies the result. �

11.14. For α ∈ Λ+ let mα ⊂ W (SV ) denote the ideal generated by δα, and let
m := ∪α∈Λ+mα. We can then apply the almost theory of section 2 for modules over
W (SV ).

Since Acris(V ) is an integral domain, for any α ∈ Λ+ the element δα is also not
a zero divisor in Acris(V ) and Bcris(V ).

Thus we can also apply the almost theory of section 2 with Bcris(V ) and the
ideals mcris,α ⊂ Bcris(V ) generated by δα. In what follows, when we consider almost
mathematics of modules over the ring Bcris(V ) (resp. W (SV )) it will always be with
respect to the ideals mcris,α (resp. mα).

Let B̃cris(V ) denote Bcris(V )[δ−1
α ]α∈Λ+ .

11.15. The action of GK on V induces an action of GK on SV , W (SV ), and
Acris(V ) by functoriality. Let χ : GK → Z∗p denote the cyclotomic character. Then
it follows from the construction that GK acts on t by

(11.15.1) g ∗ t = χ(g)t.

In particular, the action of GK on Acris(V ) induces an action on Bcris(V ). Also the
choice of the elements τm defines a homomorphism

(11.15.2) ρ : GK → Zp(1) = lim←−
n

µpn .

If g ∈ GK then the image ρ(g) = (ζn) in Zp(1) is characterized by the equality

(11.15.3) g(τn) = ζnτn.

One verifies immediately from the construction that for g ∈ GK we have

(11.15.4) g ∗ δ1 = α(ρ(g)) · δ1,

where α is the map 11.1.8. In particular, the GK-action on Bcris(V ) induces an
action of GK on B̃cris(V ).



98 MARTIN C. OLSSON

11.16. We will apply the preceding discussion as follows. Let X/V be a smooth
proper scheme and D ⊂ X a divisor with normal crossings relative to V . For any
étale morphism Spec(R) → X for which there exists a morphism as in 2.16.1, let
R∧ denote the p–adic completion of R, and let R

∧
denote the integral closure of

R∧ in the maximal subextension of the field of fractions of R∧ which is unramified
over Spec(R∧)×X Xo

K
. We then apply the preceding discussion to R

∧
, and denote

the resulting ring by Acris(R∧). Note that there is a natural action of Gal(R
∧
/R∧)

on S := SR
∧ which induces an action of Gal(R

∧
/R∧) on Acris(R∧) which in turn

induces an action ρBcris(R∧) of Galois on Bcris(R∧). This action is continuous and
compatible with the filtration. Furthermore the induced action on the diagram
11.1.4 commutes with the lift of Frobenius.

If s : Spec(Ω′)→ Spec(Ω) is a morphism of geometric generic points of Spec(R),
then there is a natural isomorphism

(11.16.1) ιs : s∗Bcris(R∧)→ Bcris(R∧)′,

where Bcris(R∧)′ denotes the Gal(R
′∧
/R∧)–module obtained by replacing Ω with

Ω′ in the above construction.

11.17. There is a natural log structure MAcris(R∧) on Spec(Acris(R∧)) defined
as follows. Choose an étale map as in 2.16, and write t1, . . . , ts ∈ R for the images
of the Ti (i = 1, . . . , s). For each i and l, the extension R[X]/(Xpl− ti) is étale over
R[1/(pt1 · · · ts)]. It follows that for each i, we can choose a sequence τi,n of elements
in R

∧
such that τp

i,n = τi,n−1 and τi,0 = ti. Let τi ∈ S denote the corresponding
element. We then get a map

(11.17.1) λ : Ns →W (S), ei 7→ [τi],

where [τi] denotes the Teichmuller lift of τi. This defines a log structure on W (S)
and hence in turn also a log structure on Acris(R∧). Note that the log structure on
R
∧

induced by this map λ composed with θ is simply the log structure induced by
pulling back MR via the map Spec(R

∧
)→ Spec(R).

We show that the above log structure on Acris(R∧) is independent of the choices
as follows. Consider a second map as in 2.16 giving elements t′1, . . . , t

′
s ∈ R defining

the log structure, and let τ ′i,n be a choice of roots of the t′i. Then there exists a
unique sequence ui,n ∈ R

∧∗
such that up

i,n = ui,n−1 and such that τi,n = ui,nτ
′
i,n.

Letting ui denote the corresponding element of S, we see that [τi] = [ui] · [τ ′i ] in
Acris(R∧), and hence we get a canonical isomorphism between the associated log
structures.

It follows from the above discussion that the enlargement 11.1.4 has a natural
structure of a logarithmic enlargement

(11.17.2)

(Spec(R
∧
/pR

∧
),MR|R∧

/pR
∧) −−−−→ (Spec(Acris(R∧)),MAcris(R∧))y

(Spec(R/p),MR/p).

Note also that the action of Gal(R
∧
/R∧) extends naturally to an action on the log

scheme (Spec(Acris(R∧)),MAcris(R∧)).
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11.18. The rings Acris(R∧) define a sheaf of rings Acris on X̂ o
K

as follows. For

any object (U,N) ∈ Ŝ with U = Spf(R∧) as in 2.16, choose a geometric generic
point η : Spec(Ω) → N and set Acris(U,N) equal to Acris(R∧)π1(N,η) with the
induced filtration. Then this is up to canonical isomorphism independent of the
choice of geometric point and Acris is defined to be the associated sheaf.

The filtrations I [·] and FilAcris define two filtrations I [·] and FilAcris on Acris.

11.19. We will also need to consider certain ideals to study cohomology with
(partial) compact support. Let D = E ∪ F be a decomposition of the boundary so
that we have ideals JE ⊂ R and JE ⊂ R. Since JE ∩ R∞ = JE,∞ (notation as in
the proof of 8.16) the natural map

(11.19.1) JE,∞ ⊗R∞ R→ JE

is by 3.4 an almost isomorphism. Since the Frobenius morphism of R∞/pR∞ clearly
induces a surjection on JE,∞/pJE,∞ this implies that the Frobenius morphism on
R/pR induces an almost surjection on JE/pJE . Also R∞/JE,∞ is p-torsion free,
so the sequence

(11.19.2) 0→ JE/pJE → R/pR→ R/(p, JE)→ 0

is almost exact. Passing to the inverse limit with respect to the Frobenius mor-
phisms we get by 2.22 an almost exact sequence

(11.19.3) 0→ lim←−
Frob

JE/pJE → SR/pR → SR/(p,JE) → 0.

Define

(11.19.4) J inf
n,E := Ker(Wn(SR)→Wn(SR/(p,JE)))

and

(11.19.5) Jcris
n,E := Ker(Acris(R)/pn+1 → Acris(R/JE)/pn+1).

Lemma 11.20. For every n the sequence

(11.20.1) 0→ J inf
n,E →Wn(SR)→Wn(SR/(p,JE))→ 0

is almost exact.

Proof. The case n = 0 is 11.19.3. The general case follows by induction and
consideration of the commutative diagrams
(11.20.2)

0 0y y
0 −−−−→ J inf

0,E −−−−→ W0(SR) −−−−→ W0(SR/(p,JE)) −−−−→ 0

×pn+1

y y×pn+1

y×pn+1

0 −−−−→ J inf
n+1,E −−−−→ Wn+1(SR) −−−−→ Wn+1(SR/(p,JE))y y y

0 −−−−→ J inf
n,E −−−−→ Wn(SR) −−−−→ Wn(SR/(p,JE)) −−−−→ 0y y

0 0.
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�

Corollary 11.21. For every integer n the sequence

(11.21.1) 0→ Jcris
n,E → Acris(R)/pn+1 → Acris(R/JE)/pn+1 → 0

is almost exact.

Proof. The only issue is the almost surjectivity of the map Acris(R)/pn+1 →
Acris(R/JE)/pn+1. By 11.5 this map can be identified with the map

(11.21.2) Acris(V )⊗Wn(SV ) Wn(SR)→ Acris(V )⊗Wn(SV ) Wn(SR/JE
)

so the almost surjectivity follows from the almost exactness of 11.20.1. �

Lemma 11.22. For every integer n the sequence

(11.22.1) 0 −−−−→ J inf
0,E

×pn

−−−−→ J inf
n,E −−−−→ J inf

n−1,E −−−−→ 0

is almost exact.

Proof. This follows from consideration of the commutative diagram 11.20.2.
�

Lemma 11.23. For every integer r ≥ 1 the sequence

(11.23.1) 0→ J inf
0,E/ξ

rJ inf
0,E → SR/(ξ

r)→ SR/JE
/(ξr)→ 0

is almost exact.

Proof. This follows from the almost exactness of 11.20.1 (with n = 0) and
the fact that ξ is a regular element in SR/JE

. �

Lemma 11.24. For every integer n the sequence

(11.24.1) 0→ Acris(V )⊗J inf
n,E → Acris(V )⊗Wn(SR)→ Acris(V )⊗Wn(SR/JE

)→ 0

is almost exact, where the tensor products are taken over W (SV )

Proof. Note that for n = 0 the sequence 11.24.1 can be identified with the
sequence obtained by applying Acris(V )/(p) ⊗SV /(ξp) (−) to the almost exact se-
quence

(11.24.2) 0→ J inf
0,E/ξ

pJ inf
0,E → SR/(ξ

p)→ SR/JE
/(ξp)→ 0.

Since SV /(ξ
p)→ Acris(V )/p is a flat morphism by 11.9 this proves the case n = 0.
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The result for general n follows by induction on n and consideration of the
diagram (where all tensor products are taken over W (SV ))
(11.24.3)

0

��

0

��
0 // Acris ⊗ J inf

0,E
//

×pn

��

Acris ⊗W0(SR) //

×pn

��

Acris ⊗W0(SR/JE
) //

×pn

��

0

Acris ⊗ J inf
n,E

//

��

Acris ⊗Wn(SR) //

��

Acris ⊗Wn(SR/JE
) //

��

0

0 // Acris ⊗ J inf
n−1,E

//

��

Acris ⊗Wn−1(SR) //

��

Acris ⊗Wn−1(SR/JE
)

��

// 0

0 0 0,

where we write Acris for Acris(V ), the top and bottom rows are exact by induction
and the middle and right columns are exact since they can by 11.5 be identified
with the almost exact sequences (note that Acris(R) and Acris(R/JE) are p-torsion
free)

(11.24.4) 0 // Acris(R)/p
×pn

// Acris(R)/pn+1 // Acris(R)/pn // 0

and
(11.24.5)

0 // Acris(R/JE)/p
×pn

// Acris(R/JE)/pn+1 // Acris(R/JE)/pn // 0.

�

Corollary 11.25. For every integer n, the natural map

(11.25.1) J inf
n,E ⊗Wn(SV ) Acris(V )/pn+1 → Jcris

n,E

is an almost isomorphism.
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Proof. Consider the commutative diagram with almost exact columns (where
the tensor products are taken over Wn(SV ))

(11.25.2) 0

��

0

��
J inf

n,E ⊗Acris(V )/pn+1 //

��

Jcris
n,E

��
Wn(SR)⊗Acris(V )/pn+1 //

��

Acris(R)/pn+1

��
Wn(SR/JE

)⊗Acris(V )/pn+1

��

// Acris(R/JE)/pn+1

��
0 0,

where the right column is almost exact by 11.21, and the bottom two horizontal
arrows are isomorphisms by 11.5. �

12. More computations of cohomology

We continue with the notation of 11.16.

Theorem 12.1. Let L be a smooth sheaf of Z/pn–modules on Xo
K

, let U· → X
be an étale hypercover with each Un admitting a morphism as in 2.16.1 and affine,
and let Û· → X̂ be the p-adic completion of U·. Then the transformation

(12.1.1) Acris(V )⊗Zp
GC(Uo

·,K , L)→ GC(Ûo
·,K , L⊗Zp

Acris(Û·))

is an almost isomorphism.

Proof. Consideration of the long exact sequences associated to the short exact
sequences

(12.1.2) 0 −−−−→ L/pL
pn

−−−−→ L/pn+1L −−−−→ L/pnL −−−−→ 0

reduces the proof to the case when n = 1.
Let SO bU· be the Galois representation which in degree n is given by applying

the construction in 11.1 to the coordinate ring of Ûn.

Lemma 12.2. For any integer j ≥ 1 the transformation

(12.2.1) (SV /(ξ
j))⊗Fp

GC(Uo
·,K , L)→ GC(Ûo

K
, SO bU· /(ξ

j)⊗ L)

is an almost isomorphism.

Proof. For j = 1 this is 9.4 and 6.16. The general case follows by induction
on j and consideration of the short exact sequences

(12.2.2) 0 −−−−→ (SV /(ξ))
×ξj

−−−−→ (SV /(ξ
j+1)) −−−−→ (SV /(ξ

j)) −−−−→ 0,
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and
(12.2.3)

0 −−−−→ (SO bU· /(ξ))
×ξj

−−−−→ (SO bU· /(ξ
j+1)) −−−−→ (SO bU· /(ξ

j)) −−−−→ 0.

�

To deduce that 12.1.1 is an isomorphism, note that by the flatness of SV /(ξ
p)→

Acris(V )/p (11.9), the map

(12.2.4) Acris(V )/(p)⊗SV /(ξp) GC(Ûo
K
, SO bU· /(ξ

p)⊗ L)

��
GC(Ûo

K
,Acris(V )/(p)⊗SV /ξp SO bU· /(ξ

p)⊗ L)

is an isomorphism. Since

(12.2.5) Acris(Û·)/p ' Acris(V )/(p)⊗SV /ξp SO bU· /(ξ
p),

theorem 12.1 follows from the fact that 12.2.1 and 12.2.4 are quasi-isomorphisms.
�

Theorem 12.3. Let L = lim←−Ln be a smooth sheaf of Zp–modules on Xo
K

(where
Ln is a smooth sheaf of Z/pn–modules), let U· → X be an étale hypercover with
each Un admitting a morphism as in 2.16.1 and affine, and let Û· → X̂ be the
p-adic completion of U·. Then the transformation

(12.3.1) Acris(V )⊗Zp
GC(Uo

·,K , L)→ GC(Ûo
K
, L⊗Zp

Acris(Û·))

is an almost quasi-isomorphism.

Proof. The map of projective systems of complexes

(12.3.2) {Acris(V )⊗Zp
GC(Uo

·,K , Ln)}n → {GC(Ûo
K
, Ln ⊗Zp

Acris(Û·))}n
is an almost quasi-isomorphism in each degree, and therefore the assumptions of
2.23 are satisfied for both projective systems in 12.3.2 (since the left projective
system clearly satisfies the assumptions of 2.23). Therefore

(12.3.3) Hi(GC(Ûo
K
, L⊗Zp

Acris(Û·)))→ lim←−H
i(GC(Ûo

K
, Ln ⊗Zp

Acris(Û·)))

is an almost isomorphism, and by 2.21 the composite map

Acris(V )⊗Zp
Hi(GC(Uo

·,K , L)) = lim←−(Acris(V )⊗Hi(GC(Uo
·,K , Ln)))

→ lim←−H
i(GC(Ûo

K
, Ln ⊗Zp Acris(Û·)))

is also an almost isomorphism. �

The preceding result also extends to the filtered context:

Corollary 12.4. With notation as in 12.3, for any integer n ≥ 0 the natural
map

(12.4.1) Filn
Acris(V )

⊗Zp GC(Uo
·,K , L)→ GC(Ûo

K
, L⊗Zp Filn

Acris(bU·))
is an almost quasi-isomorphism.
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Proof. By induction on n. The case n = 0 is 12.3. For the inductive step
consider the short exact sequences

(12.4.2) 0→ Filn+1

Acris(V )
→ Filn

Acris(V )
→ V

∧ · ξ[n] → 0,

and

(12.4.3) 0→ Filn+1

Acris(bU·) → Filn
Acris(bU·) → O bU· · ξ[n] → 0.

�

Corollary 12.5. With notation as in 12.3, the natural map

(12.5.1) B̃cris(V )⊗Qp
GC(Uo

·,K , L⊗Qp)→ GC(Ûo
·,K , L⊗Zp B̃cris(Û·))

is a filtered quasi–isomorphism.

12.6. We will also need variants of the above results for cohomology with partial
compact support along the boundary.

For simplicity we explain just the situation for cohomology with compact sup-
port along the entire boundary, leaving to the reader to make the necessary mod-
ifications to treat partial compact support. Also fix an ordering of the boundary
components D = D1 ∪ · · · ∪ Dm. Write Ûn := Spec(Rn) and let Rn be the nor-
malization of Rn in Ûn ×X Xo

K
. For A ⊂ {1, . . . ,m} let Rn,A be as in 8.18. We

can then apply the functor Acris(−) to get a Galois module over Ûo
n,K

which we

denote by Acris(Ûn/JA). This construction is functorial in Ûn so we obtain a sheaf
Acris(Û·/JA) on Ûo

K,Fet
. Define a complex Φ(Acris(Û·))• by setting

(12.6.1) Φ(Acris(Û·))r := ⊕A⊂{1,...,m},|A|=rAcris(Û·/JA)

with transition maps defined as in 8.15. Let Jcris
n ⊂ Acris(Û·)/pn+1 be the ideal

corresponding to D as in 11.19.5.
There is a similar construction with Wr(S−) instead of Acris(−). Namely, for

[n] ∈ ∆ and A ⊂ {1, . . . ,m}, let Wr(SbUn/JA
) denote the truncated Witt ring of the

perfection of Rn,A. Then we again obtain a complex Φ(Wr(SbU·))• with

(12.6.2) Φ(Wr(SbU·))k := ⊕A⊂{1,...,m},|A|=kWr(SbU·/JA
).

Note also that there is a natural augmentation

(12.6.3) J inf
r → Φ(Wr(SbU·))•.

If r = 0 we write simply Φ(SbU·)• for Φ(W0(SbU·))•.
Lemma 12.7. For every integer j ≥ 1 the map

(12.7.1) J inf
0 /ξjJ inf

0 → Φ(SbU·)/(ξj)•.

is an almost quasi–isomorphism.

Proof. We proceed by induction on j.
For the case j = 1 note that SbU·/(ξ) = R·/(p), and if J ⊂ R· denotes the ideal

of the boundary as in 3.15 then J inf
0 /ξJ inf

0 ' J/pJ (by 11.23). The result in the
case j = 1 then follows from an argument similar to the one used in the proof of
8.16.
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The inductive step is obtained by devissage and noting that for every integer j
we have exact sequences (the first being termwise exact)
(12.7.2)

0 −−−−→ Φ(SbU·)/(ξ)• ×ξj

−−−−→ Φ(SbU·)/(ξj+1)• −−−−→ Φ(SbU·)/(ξj)• −−−−→ 0,

and
(12.7.3)

0 −−−−→ J inf
0 /ξJ inf

0
×ξj

−−−−→ J inf
0 /ξj+1J inf

0 −−−−→ J inf
0 /ξjJ inf

0 −−−−→ 0.

�

Proposition 12.8. The inclusion Jcris
n ⊂ Acris(Û·)/pn+1 = Φ(Acris(Û·))0/pn+1

induces an almost quasi-isomorphism

(12.8.1) Jcris
n → Φ(Acris(Û·))•/pn+1.

Proof. By devissage one is reduced to the case n = 0. In this case 12.8.1 is
obtained from the morphism of complexes

(12.8.2) J inf
0 /ξpJ inf

0 → Φ(SbU·)/(ξp)•.

by making the flat base change SV /(ξ
p) → Acris(V )/(p) (and using the identifi-

cations provided by 11.25). It therefore suffices to show that 12.8.2 is an almost
quasi–isomorphism which is 12.7. �

12.9. Let L be a smooth sheaf of Z/pn+1–modules on Xo
K

, and let Ψ(L) be as
in 8.3. As in 8.18.3, there is a natural map

(12.9.1) Ψ(L)|bU·,K,Fet
→ L⊗ Φ(Acris(Û·)/pn+1).

We then obtain a diagram

(12.9.2) GC(Û·, L⊗ Jcris
n )→ GC(Û·, L⊗ Φ(Acris(Û·)/pn+1))← GC(Uo

K
,Ψ(L)),

where the first map is an almost quasi-isomorphism. Passing to the limit over all
hypercovers U· we get maps

(12.9.3) H∗(GC(Û·, L⊗ Jcris
n )) // H∗(GC(Û·, L⊗ Φ(Acris(Û·)/pn+1)))

H∗
c (Xo

K
, L)⊗Acris(V )/pn+1.

OO

Theorem 12.10. All the maps in 12.9.3 are almost isomorphisms.

Proof. By the usual devissage one is reduced to the case when n = 0. As in
the proof of 12.1, by the flatness of SV /(ξ

p) → Acris(V )/p it then suffices to show
that the map

(12.10.1) H∗
c (Xo

K
, L)⊗ SV /ξ

p → H∗(GC(Û·, L⊗ Φ(SbU·)/ξp))

is an almost isomorphism. Filtering again by powers of ξ we are reduced to 6.16. �

As in 12.3, we then also obtain results for adic sheaves:
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Theorem 12.11. Let L = lim←−Ln be a smooth Zp–sheaf on Xo
K

. Then there is
a natural almost isomorphism

(12.11.1) H∗(GC(Û·, L⊗ Jcris)) ' H∗
c (Xo

K
, L)⊗Acris(V ).

In particular there is an actual isomorphism

(12.11.2) H∗(GC(Û·, L⊗ Jcris ⊗Acris(bU·) B̃cris(Û·))) ' H∗
c (Xo

K
, L)⊗ B̃cris(V ).

13. Crystalline cohomology and crystalline sheaves

13.1. Since we are interested in Qp–coefficients and isocrystals we will work
throughout with the convergent topos as opposed to the crystalline topos. The
reference for the convergent topos in the non–logarithmic setting is [39] and in the
logarithmic setting the paper [46].

Let X/V be a smooth proper scheme, D ⊂ X a divisor with relative normal
crossings defining a log structure MX on X, and let (Y,MY ) denote the closed
fiber of (X,MX). Recall that the convergent topos ((Y,MY )/V )conv is the topos
associated to the site Conv((Y,MY )/V ) whose objects are strict closed immersions
(U,MU ) ↪→ (T,MT ), where U → X is an étale morphism, MU is the pullback of
MX , and (T,MT ) is a formal log scheme flat over Spf(V ) with the π-adic topology.
The diagram

(U,MU ) � � //

��

(T,MT )

(X,MX)

is called an enlargement. We often write simply (T,MT ) for such an enlargement.
A morphism ((U ′,MU ′) ↪→ (T ′,MT ′)) → ((U,MU ) ↪→ (T,MT )) is a commutative
diagram of log schemes

(13.1.1)

(U ′,MU ′) −−−−→ (T ′,MT ′)

a

y yb

(U,MU ) −−−−→ (T,MT ),

where a is a X–morphism. Coverings are defined to be collections of morphisms
{(Ti,MTi

)→ (T,MT )}i such that the map
∐
Ti → T is an étale covering.

We write O(Y,MY )/V for the structure sheaf (T,MT ) 7→ Γ(T,OT ) and K(Y,MY )/V

for the sheaf (T,MT ) 7→ Γ(T,OT )⊗Q. For a sheaf F of K(Y,MY )/V –modules and
an object (T,MT ) of Conv((Y,MY )/V ) we write FT for the induced sheaf on Tet.
An isocrystal is a sheaf F of K(Y,MY )/V –modules such that for every (T,MT ) the
sheaf FT is coherent and such that for any morphism f : (T ′,MT ′) → (T,MT ) in
Conv((Y,MY )/V ) the induced morphism f∗FT → FT ′ is an isomorphism.

Let W denote the ring of Witt vectors of the residue field k of W . Then we can
also consider the convergent topos ((Y,MY )/W )conv. There is a natural morphism
of topoi

(13.1.2) π : ((Y,MY )/V )conv → ((Y,MY )/W )conv.

For any isocrystal F in ((Y,MY )/W )conv the induced morphism

(13.1.3) H∗(((Y,MY )/W )conv,F )→ H∗(((Y,MY )/V )conv, π
∗F )
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is an isomorphism (without log structures this is [40, 3.2], and the same argument
yields the case with log structures).

Note that Frobenius induces a morphism of topoi

(13.1.4) σ : ((Y,MY )/W )conv → ((Y,MY )/W )conv.

We can therefore define an F–isocrystal to be a pair (F , ϕF ) where F is an
isocrystal in ((Y,MY )/W ) and ϕF : σ∗F → F is an isomorphism.

13.2. Let (X̂,M bX) denote the p–adic completion of (X,MX) so that (Y,MY ) ↪→
(X̂,M bX) is an object of Conv((Y,MY )/V ). As usual, there is then a morphism of
sites
(13.2.1)
Et(X̂)→ Conv((Y,MY )/V ), (T → X̂) 7→ ((T ×X Y,MY |T×XY ) ↪→ (T,M bX |T ))

inducing a morphism of topoi

(13.2.2) uX/V : ((Y,MY )/V )conv → X̂et.

As in the classical case, the category of isocrystals is identified with the category
of coherent K bX–modules F with an integrable connection

(13.2.3) ∇ : F → F ⊗OcX Ω1
( bX,McX)/V

satisfying a p-adic convergence condition. Write DR(F ,∇) for the associated
de Rham complex. By [46, 2.3.5] there is then a canonical quasi–isomorphism
RuX/V ∗F ' DR(F ,∇). Note also that since X/V is proper an isocrystal is in-
duced by a unique coherent OXK

–module with integrable connection satisfying a
convergence condition, and the de Rham complexDR(F ,∇) computes the de Rham
cohomology of this module with integrable connection on the generic fiber by [11,
III.5.1.2].

13.3. Let D = E∪F be a decomposition of the boundary of X. We can then de-
fine an isocrystal JE as follows. First let M denote the sheaf on Conv((Y,MY )/W )
which to any (U,MU ) ↪→ (T,MT ) associates Γ(T,MT ) = Γ(U,MU ). For any geo-
metric point t̄ → U the stalk MU is canonically isomorphic to the free monoid
with generators indexed by the irreducible components of the inverse image of D
in Spec(OU,t̄). In particular, there is a canonical submonoid KE,t̄ ⊂ M t̄ gen-
erated by the sum of the generators of M t̄ corresponding to those irreducible
components which are in E. One verifies immediately that there is a subsheaf
of monoids KE ⊂ M whose stalks at each geometric point t̄ agrees with KE,t̄.
Define J ′E ⊂ O(Y,MY )/V to be the sheaf of ideals whose restriction to any (T,MT )
is generated by the images of sections m ∈MT mapping to KE in MT .

If U → Y is étale and admits a chart 2.16.1 and if (U,MU ) ↪→ (Z,MZ) is an
embedding into a formally log smooth W–scheme, then a chart for (U,MU ) extends
to a chart

(13.3.1) (Z,MZ)→ Spf(W [X1, . . . , Xd]).

If E is defined by the inverse image of {X1 · · ·Xs = 0} then JE,Z ⊂ OZ is simply
the ideal defined by the image of X1 · · ·Xs. This implies that if f : (Z ′,MZ′) →
(Z,MZ) is a morphism of log smooth objects of Conv((Y,MY )/W ) then the natural
map f∗JE,Z → JE,Z′ is an isomorphism. In particular, applying this to the com-
pletion of (Z,MZ)×V (Z,MZ) (this should be the “strictification” of the diagonal;
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see [29, 5.8] and [41, Appendix A]) we see that JE,Z has a canonical integrable
connection defining an isocrystal JE . Concretely, in local coordinates 13.3.1 this
just amounts to saying that the connection

(13.3.2) d : W [X1, . . . , Xd]→W [X1, . . . , Xd]⊗W (⊕iW · d logXi)

sends the ideal (X1 · · ·Xs) to (X1 · · ·Xs)⊗W (⊕iW · d logXi) which is immediate.
Let JE denote the corresponding isocrystal on Conv((Y,MY )/W ). There is a nat-
ural surjection JE → J ′E which is an isomorphism on formally smooth objects of
Conv((Y,MY )/W ) (the kernel is “parasitic”). If E = D we also sometimes write
just JX for JE .

Lemma 13.4. Let (U,MU ) ↪→ (T,MT ) be an object of Conv((Y,MY )/W ) with
T affine, and assume given a chart c : Nr → MU such that E is defined by the
image f of (1, . . . , 1, 0, . . . , 0) (1’s in the first s places). Assume that for some
lifting c̃ : Nr → MT of the chart the image f̃ of (1, . . . , 1, 0, . . . , 0) in OT is a
non–zero divisor. Then the map JE(T )→ J ′E(T ) is an isomorphism.

Proof. This follows immediately from the preceding discussion. �

Corollary 13.5. Let U = Spec(R) → X be an étale morphism admitting a
morphism as in 2.16.1. Then the natural map JE(Acris(R∧)) → J ′E(Acris(R∧)) is
an isomorphism.

13.6. Note that there is a natural map σ∗JE → JE , which is not usually an
isomorphism. Thus for any F–isocrystal (F , ϕF ) we can consider the cohomology
with compact support along E

(13.6.1) H∗(((Y,MY )/W )conv,F ⊗ JE)

which has a semi-linear Frobenius endomorphism. There is a canonical pairing

(13.6.2) H∗(((Y,MY )/W )conv,F ⊗ JE)⊗H2d−∗(((Y,MY )/W )conv,F ∗ ⊗ JF )

��
H2d(((Y,MY )/W )conv, JX)

compatible with Frobenius.

Lemma 13.7. This pairing is a perfect pairing.

Proof. It suffices to verify this after base changing to K. Thus we may
consider the topos ((Y,MY )/V )conv instead of ((Y,MY )/W )conv. In this case it
suffices to show the analogous result for de Rham cohomology of the generic fiber.
Write also JE for the ideal in OXK

defining EK . Then we wish to show that the
natural map

(13.7.1) RΓ(DR(F ⊗ JE ,∇))→ RHom(RΓ(DR(F∗ ⊗ JF ,∇)),Ωd
XK

)

is an isomorphism or better the local version that

(13.7.2) DR(F ⊗ JE ,∇)→ RHom(DR(F∗ ⊗ JF ,∇),Ωd
XK

)

is an isomorphism which is immediate. �

Lemma 13.8 ([46, 2.3.6]). Let F be an isocrystal. Associated to the lifting
(X̂,M bX) is a canonical resolution F → R• such that each Ri is acyclic for the
projection uX/V ∗. This resolution is functorial in F .
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Proof. Let T denote the object of the convergent site of (Y,MY ) given by
(Y,MY ) ↪→ (X̂,M bX). There is then a diagram of topoi

(13.8.1)

((Y,MY )/V )conv|T
φT−−−−→ X̂et

jT

y
((Y,MY )/V )conv.

As explained in [46, 2.3.6] (in loc. cit. our Rj is denoted ωj
P (E)) the resolution is

then given by Rj := jT∗(φ∗T Ωj
(X,MX)/V ⊗ j

∗
T F ). �

Remark 13.9. Note that since F is an isocrystal, there is a canonical isomor-
phism j∗T F ' φ∗TF . Therefore if F comes is equipped with a filtration A• satisfying
Griffiths transversality (see 13.11.1 below), then each of the sheaves Ri is naturally
filtered by the subsheaves jT∗(φ∗T Ωj

(X,MX)/V ⊗ φ
∗
TA

i) and R• is a filtered complex

(where jT∗(φ∗T Ωj
(X,MX)/V ⊗ φ

∗
TA

i) lies in the (i+ j)-th step of the filtration). Fur-
thermore, if (F ,∇) is the module with integrable connection corresponding to F
then the natural map (F ,∇)→ R•| bX is a filtered quasi–isomorphism.

13.10. Let F → R• be the resolution corresponding to our lifting (X,MX)/V .
The sheaves Ri are not isocrystals, but still the value Ri(Z,MZ) of Ri on any
affine enlargment (U,MU ) ↪→ (Z,MZ), with (Z,MZ) formally smooth over V , has
a canonical integrable connection

(13.10.1) Ri(Z,MZ)→ Ri(Z,MZ)⊗ Ω1
(Z,MZ)/V .

This follows from the construction of Ri (see the proof of [46, 2.3.5] and without log
structures [39, 0.5.4]). Moreover, by the proof of the convergent Poincaré lemma
[46, 2.3.5 (2)], the complex R•(Z,MZ) is a resolution of F (Z,MZ).

13.11. As in [14] there is a category MF∇X (Φ) defined as follows. Fix a geo-
metric generic point η : Spec(Ω) → X, and let Ω̂ denote the p–adic comple-
tion. If F is an isocrystal on (Y,MY )/W , let (F ,∇F ) denote the module with
logarithmic connection on (XK ,MXK

) obtained by evaluating F on the enlarge-
ment (Y,MY ) ↪→ (X∧,MX∧), where (X∧,MX∧) denotes the p–adic completion
of (X,MX)/V . The category MF∇X (Φ) is defined to be the category of triples
(F , ϕF ,FilF ), where (F , ϕF ) is an F–isocrystal on (Y,MY )/W and FilF is a
decreasing filtration on F satisfying Griffiths transversality

(13.11.1) ∇F (FiliF ) ⊂ Fili−1
F ⊗ Ω1

(XK ,MXK
)/K .

13.12. If (F , ϕF ,FilF ) ∈ MF∇X (Φ) and Spec(R) → X a disjoint union of
open subsets of X admitting morphisms as in 2.16.1, we can evaluate F on the en-
largement 11.17.2 to get a Acris(R∧)⊗Q–module F ((Spec(Acris(R∧)),MAcris(R∧))).
Inverting t ∈ Acris(R∧), we get a Bcris(R∧)–module which we denote simply by
F (Bcris(R∧)). The F–isocrystal structure ϕF induces a semi–linear automorphism
of the Bcris(R∧)–module F (Bcris(R∧)).

The Bcris(R∧)–module F (Bcris(R∧)) also has a natural filtration FilF (Bcris(R∧))

defined as follows. Since (X,MX)/V is smooth, we can choose a morphism

(13.12.1) r : (Spec(Acris(R∧)),MAcris(R∧))→ (Spec(R),MSpec(R))
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such that the diagram

(13.12.2)

(Spec(R
∧
),MR∧) −−−−→ (Spec(Acris(R∧)),MAcris(R∧))y yr

(Spec(R),MSpec(R))
id−−−−→ (Spec(R),MSpec(R))

commutes. The choice of such an r gives an isomorphism

(13.12.3) σr : F (Bcris(R∧)) ' F(Spec(R))⊗R Bcris(R∧),

and we define FilF (Bcris(R∧)) to be the tensor product filtration of FilF(Spec(R)) and
the filtration FilBcris(R∧) on Bcris(R∧).

Lemma 13.13. The filtration FilF (Bcris(R∧)) is independent of the choice of r.

Proof. See [50] or [41, 5.8]. �

13.14. The module F (Bcris(R∧)) also comes equipped with a continuous action
of Gal(R

∧
/R∧) which commutes with the Frobenius automorphism induced by the

F–isocrystal structure as well as the filtration. As in 11.16, this Gal(R
∧
/R∧)–

module F (Bcris(R∧)) is functorial for morphisms s : Spec(Ω′) → Spec(Ω) of geo-
metric generic points of Spec(R).

If U = Spec(R) → X is a disjoint union of open subsets of X admitting a
morphism as in 2.16.1 and (F,ϕF ,FilF ) ∈ MF∇X (Φ), we write F (Bcris(U∧)) (or
F (Bcris(R∧))) for the filtered Galois module with semi–linear automorphisms on
U∧o

K := Spec(R∧)×X Xo
K obtained from the construction 13.12 on each connected

component.

13.15. If L is a smooth Qp–sheaf on Xo
K and U → X is étale and admitting

a morphism 2.16.1, the pullback of L to U∧o
K is a Galois module on U∧o

K which we
denote by LU∧o

K
. Define an association ι between (F,ϕF ,FilF ) ∈ MF∇X (Φ) and a

smooth Qp–sheaf L on Xo
K to be a collection of isomorphisms of Galois modules,

one for each étale U → X as in 2.16.1,

(13.15.1) ιU : F (Bcris(U∧)) ' LU∧o
K
⊗ Bcris(U∧)

compatible with the semi–linear Frobenius automorphisms, and the filtrations. Fur-
thermore, we require that the isomorphisms ιU be compatible with morphisms over
X. A smooth sheaf L on XK is called crystalline if it is associated to some object
in MF∇X (Φ).

Remark 13.16. Crystalline sheaves arise as follows. Let X and Y be smooth
proper V –schemes with normal crossing divisors D ⊂ X and E ⊂ Y , and let
f : Y → X be a morphism with f−1(D) ⊂ E. Assume that the induced morphism
of log schemes f : (Y,MY ) → (X,MX) (log structures defined by E and D) is of
Cartier type [29, 4.8]. For example, if étale locally on X and Y we can describe
the morphism as

(13.16.1) V [X1, . . . , Xr, t1, . . . , ts]

��
V [X1, . . . , Xr, Y1, . . . , Yp, z1, . . . , zs, w1, . . . , ws]/(ti = ziwi)s

i=1
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such that D is the divisor defined by t1 · · · ts = 0 and E is the divisor defined
by z1 . . . , zsw1 · · ·ws = 0. Then for any crystalline sheaf L on Y associated to
some object (F,ϕF ,FilF ) ∈ MF∇Y (Φ) and integer i the direct image Rif∗L on
Xo

K
is crystalline and is associated to Rif∗F (with the filtration and F–isocrystal

structure induced by that on F ). This is shown in [14, 6.3]. In particular we can
take L = Qp which is associated to the trivial F–isocrystal.

13.17. Let L be a crystalline sheaf associated to (F,ϕF ,FilF ). For any decom-
position D = E ∪ F we now define a transformation
(13.17.1)
α : B̃cris(V )⊗K H∗(((Y,MY )/V )conv, F ⊗ JE)→ B̃cris(V )⊗Qp

H∗
E,F (Xo

K,et
, L)

compatible with Galois action, filtrations, and Frobenius as well as cup-products.
For this choose an étale hypercover U· → X with each Un admitting a morphism

2.16.1. Let Z· → Y be the reduction of U·.
For any étale morphism Z → Y , let hZ denote the sheaf on Conv((Y,MY )/V )

which to any ((U,MU ) ↪→ (T,MT ) associates the set of morphisms U → Z over Y .
Then the localized topos ((Y,MY )/V )conv|hZ

is canonically equivalent to the topos
((Z,MZ)/V )conv. Write Acris(U∧· ) for the simplicial object of Conv((Y,MY )/V )
defined by the enlargements Acris(U∧n ). Then there is a natural morphism of sheaves
Acris(U∧· )→ hZ· which induces a morphism of topoi

(13.17.2) π : ((Y,MY )/V )conv|Acris(U∧
· ) → ((Y,MY )/V )conv|hZ·

.

This morphism sits naturally in a commutative diagram of topoi

(13.17.3)

((Y,MY )/V )conv|hZ·

π←−−−− ((Y,MY )/V )conv|Acris(U∧
· )

uU∧·

y yuAcris(U∧· )

Z·,et Acris(U∧· )et

Let π0(U·,K) denote the simplicial set

(13.17.4) [n] 7→ {the set of connected components of Un,K}.

We view π0(U·,K) as a simplicial topos with the discrete topology. Let Vec
π0(U·,K)

K

denote the category of sheaves of K–vector spaces in this topos. Concretely,
Vec

π0(U·,K)

K assigns in a functorial manner a K–vector space to each connected
component of each Un,K . Taking global section defines a functor

(13.17.5) Γ• : (KX/V –modules in ((Y,MY )/V )conv|hZ·
)→ Vec

π0(U·,K)

K .

We can also consider the evaluation on the enlargements Acris(U∧n ) which gives a
functor

(13.17.6) evAcris(U∧
· ) : (KX/V –modules in ((Y,MY )/V )conv|hZ·

)→ Vec
π0(U·,K)

K .

There is a natural transformation of functors Γ• → evAcris(U∧
· ). Since the functor

evAcris(U∧
· ) is exact on quasi–coherent isocrystals this induces a natural morphism

(13.17.7) RΓ•(F ⊗ JE)→ evAcris(U∧
· )(F ⊗ JE)

in the derived category D(Vec
π0(U·,K)

K ).
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We can also consider the topos ((Y,MY )/W )conv|hZ·
which sits in a diagram

(13.17.8)
((Y,MY )/W )conv|hZ·

← ((Y,MY )/V )conv|hZ·
← ((Y,MY )/V )conv|Acris(U∧

· ).

If

(13.17.9) Γ′• : (K(Y,MY )/W –modules in ((Y,MY )/W )conv|hZ·
)→ Vec

π0(U·,K)

K

denotes the global section functor we then obtain a diagram

(13.17.10) RΓ′•(F ⊗ JE)→ RΓ•(F ⊗ JE)→ evAcris(U∧
· )(F ⊗ JE).

It follows from the construction that the composite

(13.17.11) RΓ′•(F ⊗ JE)→ evAcris(U∧
· )(F ⊗ JE)

is compatible with the Frobenius actions. This map induces a morphism in the
category D(Vec

π0(U·,K)

K )

(13.17.12) RΓ′•(F ⊗ JE)→ (F ⊗ JE)(Bcris(U∧· )).

13.18. Next we need some facts about Galois representations. Let Repcts
K (∆·)

denote the simplicial category whose fiber over [n] ∈ ∆ is the category of collections
(Li)i∈π0(Un,K), where each Li is a continuous representation of the fundamental
group (with respect to the fixed generic base point) of the i–th connected component
of Uo

K
. The category Repcts

K (∆·) is easily seen to be an abelian tensor category with
enough injectives. We denote by D(Repcts

K (∆·)) its derived category.
The functor evAcris(U∧

· ) is naturally viewed as taking values in Repcts
K (∆·), and

the transformation of functors Γ• → evAcris(U∧
· ) in fact factors through the subfunc-

tor of invariants in evAcris(U∧
· ).

From this it follows that the morphism 13.17.12 induces a morphism in the
derived category D(Vec

π0(U·,K)

K )

(13.18.1) RΓ•(F ⊗ JE)→ GC((F ⊗ JE)(Bcris(U∧· )))

compatible with Frobenius.

Lemma 13.19. The induced morphism

(13.19.1) RΓ•(F ⊗ JE)→ GC((F ⊗ JE)(Bcris(U∧· )))

extends canonically to a morphism in the filtered derived category.

Proof. The map can be represented on the level of filtered complexes as fol-
lows. Let F ⊗ JE → R• be the resolution given by 13.8. By 13.9 the complex
RΓ•(F ⊗ JE) can then be represented, as a filtered complex, by R•(U∧· )∇ with the
filtration induced by the filtration on the Ri. Then 13.19.1 is given by the map in
the filtered derived category
(13.19.2)

R•(U∧· )∇ −−−−→ GC(R•(Bcris(U∧· ))) '←−−−− GC((F ⊗ JE)(Bcris(U∧· ))).
�

13.20. Combining all of this with 12.5 we obtain the transformation 13.17.1.
By functoriality of the above construction and the fact that any two hypercovers
as in 13.17 can be refined by a third, the map α is independent of the choices.
The main comparison theorem, whose proof occupies the next section, is then the
following:
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Theorem 13.21. The transformation 13.17.1 is an isomorphism compatible
with Frobenius, Galois action, and strictly compatible with the filtrations. In addi-
tion 13.17.1 is compatible with Chern classes of vector bundles on X.

14. Proof of the comparison theorem

14.1. Let us begin by proving that the transformation α in 13.17.1 is compatible
with Chern classes of vector bundles.

First consider the case of a line bundle L on Y . For the crystalline Chern class
it is now necessary to recall the definition of the crystalline topos (as opposed to the
convergent). For this let Cris((Y,MY )/W ) denote the site whose objects are strict
closed immersions ((U,MU ) ↪→ (T,MT )), where U is an étale Y –scheme, together
with a divided power structure γ on the ideal of U in T such that the ideal of U
in T is a nil–ideal. Morphisms and coverings are defined as in [29, 5.2], and the
associated topos is denoted ((Y,MY )/W )cris. Let O(Y,MY )cris denote the structure
sheaf sending (U,MU ) ↪→ (T,MT ) to Γ(T,OT ), and let O(Y,MY ) denote the sheaf
((U,MU ) ↪→ (T,MT )) 7→ Γ(U,OU ). There is a natural surjection O(Y,MY )cris →
O(Y,MY ) whose kernel F 1 is a PD–ideal. Looking at the units we get an exact
sequence

(14.1.1) 0→ 1 + F 1 → O∗
(Y,MY )cris → O∗

(Y,MY ) → 0.

Since F 1 has divided powers there is also a logarithm map

(14.1.2) log : 1 + F 1 → O(Y,MY )cris, 1 + t 7→
∑
m≥1

(−1)m−1(m− 1)!t[m].

Passing to cohomology we therefore get a map

(14.1.3)
H1(Y,O∗

Y ) → H2(((Y,MY )/W )cris, 1 + F 1)
log⊗Q→ H2(((Y,MY )/W )cris,O(Y,MY )cris)⊗Q
' H2(((Y,MY )/W )conv,K(Y,MY )/W ),

where the last isomorphism is by [46, 3.1.1]. This defines the crystalline Chern
class ccr1 (L ).

To identify the image of ccr1 (L ) under α, assume that L is trivialized on each
Un (after further refinement we may assume this is the case). Let Rn denote the
coordinate ring of Un so we have an exact sequence of simplicial groups

(14.1.4) 0→ 1 + FAcris(U∧
· ) → Acris(U∧· )∗ → (R

∧
· /pR

∧
· )∗ → 0.

Choose trivializations of L on each Un so that the gluing data is given by an element
u ∈ (R∧1 /pR

∧
1 )∗. By the method of 13.18 this defines a class inH1(GC((R

∧
· /pR

∧
· )∗))

and hence by composing with the boundary map and the logarithm map we get
α(ccr1 (L )) from the composite

(14.1.5)
H1(GC(R

∧
· /pR

∧
· )∗) → H2(GC(1 + FAcris(U∧

· )))
log→ H2(GC(Acris(U∧· )))
→ H2(GC(Bcris(U∧· ))).

14.2. The image of the étale Chern class cet1 (L ) in H2(GC(BcrisU
∧
· ))(1) under

the isomorphism 12.5 is obtained as follows. Consider the sequence

(14.2.1) 0→ Zp(1)→ lim←−R
∧∗
· → R

∧∗
· → 0,
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where the projective limit in the middle is given by the maps R
∧∗ → R

∧∗
sending

f to fp. Then cet1 (L ) is given by the map

(14.2.2)
H1(R∧∗· ) → H1(GC(R

∧∗
· ))

→ H2(GC(Zp(1)))
→ H2(GC(Acris(R∧· )))(1).

Here the first map is induced by the maps R∧∗m → GC(R
∧∗
m ) obtained from the

natural inclusion of R∧∗m into the Galois invariants in R
∧∗
m .

Let α : Zp(1) → 1 + F 1 be the map defined in 11.1.8, and let σ : lim←−R
∧∗
· →

Acris(R∧· ) be the composite

(14.2.3)
lim←−R

∧∗
· → S∗· := lim←−(R

∧
· /pR

∧
· )∗

[−]→ W (S·)∗

→ Acris(R∧· )∗,

where [−] : S∗· → W (S·)∗ denote the Teichmuller lifting. Then it follows from the
definitions that the diagram
(14.2.4)

0 −−−−→ Zp(1) −−−−→ lim←−R
∧∗
· −−−−→ R

∧∗
· −−−−→ 0

α

y σ

y y
0 −−−−→ 1 + FAcris(U∧

· ) −−−−→ Acris(U∧· )∗ −−−−→ (R
∧
· /pR

∧
· )∗ −−−−→ 0

commutes, and from this one obtains the following:

Proposition 14.3. The diagram
(14.3.1)

H1(X,O∗
X)

ccr
1 (−) //

cet
1 (−)

��

H2(((Y,MY )/V )conv,K(Y,MY )/V )⊗ B̃cris(V )

α

��
H2(Xo

K,et
,Qp(1))⊗Qp

B̃cris(V )
β // H2(Xo

K,et
,Qp)⊗Qp

B̃cris(V )

commutes, where the map β is obtained from the map 11.1.9.

14.4. It is now an essentially formal consequence that α is also compatible
with higher Chern classes of vector bundles. For this let H∗ denote either étale
cohomology (with appropriate Tate twists) or crystalline cohomology and let c1 :
H1(X,O∗

X)→ H2(X) denote the Chern class map. Then for a vector bundle E on
X the higher Chern classes ci(E ) ∈ H2i(X) are defined as follows. Let Y = PX(E ∗)
denote the projective bundle associated to the dual of E . Let ξ ∈ H2(Y ) denote
the first Chern class of the tautological line bundle on Y . Then the cohomology
ring H∗(Y ) is a free H∗(X)–module with basis 1, ξ, . . . , ξr−1. In particular, there
exists a unique relation

(14.4.1) ξr + c1(E )ξr−1 + · · ·+ cr−1(E )ξ + cr(E ) = 0

in H2r(Y ) with ci(E ) ∈ H2i(X). This defines the higher Chern classes of a vector
bundle. Since the transformation α is functorial with respect to the map Y → X
the following proposition follows from the case of a line bundle.
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Proposition 14.5. For any vector bundle E on X, we have

(14.5.1) α(ccri (E )) = β⊗i(ceti (E )),

where β⊗i is defined as in 11.1.10.

14.6. By construction the transformation α is functorial with respect to mor-
phisms f : (Y,DY )→ (X,DX), whereX and Y are smooth V –schemes of dimension
dY and dX respectively, DY ⊂ Y and DX ⊂ X are divisors with normal crossings
relative to V , and f−1(DX) ⊂ DY . For such a morphism f the pullback functor
f∗ has an adjoint f∗ with respect to the pairings provided by Poincaré duality.
Precisely, for any decompositions DX = E ∪ F and DY = EY ∪ FY such that
f−1(E) ⊂ EY we get as in 8.20 maps
(14.6.1)
f cr
∗ : Hi(((Y,MY )/V )conv, f

∗M ⊗ JEY
)→ H2dX−2dY +i(((X,MX)/V )conv,M ⊗ JE)

and

(14.6.2) f et
∗ : Hi

EY ,FY
(Y o

K
, f∗L)→ H2dX−2dY +i

E,F (Xo
K
, L)(dX − dY ).

Proposition 14.7. Assume that f is a closed immersion of pure codimension
e. Then α ◦ f cr

∗ = β⊗e ◦ f et
∗ ◦ α.

Proof. To ease notation write just

(14.7.1)
Hi

cris(X) for Hi(((X,MX)/V )conv,M ⊗ JE),
Hi

cris(Y ) for Hi(((Y,MY )/V )conv, f
∗M ⊗ JEY

),
Hi

et(X) for Hi
E,F (Xo

K
, L) etc.

Let Z denote the blow-up of X × P1 along Y × {∞}. A calculation in local
coordinates shows that the strict transformW ⊂ Z of Y ×P1 maps isomorphically to
Y ×P1 so we obtain a lifting f̃ : Y ×P1 ↪→ Z. For any point t ∈ P1, let Zt denote the
fiber of Z over t and let ft : Y ↪→ Zt be the inclusion induced by f̃ . Let N denote
the normal bundle of Y in X. A calculation shows that Z∞ has two irreducible
components Z ′∞ and Z ′′∞, where Z ′∞ is the projective bundle PY (N ∗ ⊕ OY ) and
Z ′′∞ is the blow-up of X along Y . Furthermore, the intersection Z ′∞ ∩ Z ′′∞ is the
projective bundle PY (N ∗) sitting in PY (N ∗⊕OY ) by the embedding given by the
projection N ∗ ⊕ OY → N ∗ to the first factor. Finally the image of Y in Z∞ is
contained in Z ′∞ and does not meet Z ′∞ ∩ Z ′′∞.

Let H∗(Z) denote the cohomology of Z with partial compact support along the
strict transform D of D, and let H∗(Z,Z∞) denote the cohomology with compact
support along D∪Z∞. If j : Z−(D∪Z∞)→ Z−D and i : Z∞−(D∩Z∞) ↪→ Z−D
are the inclusions, then for any sheaf L on Zet there is an exact sequence of étale
sheaves

(14.7.2) 0→ j!j
∗L→ L→ i∗i

∗L→ 0.

It follows that the sequence

(14.7.3) H∗
et(Z,Z∞)

p−−−−→ H∗
et(Z)

q−−−−→ H∗
et (Z∞)

is exact. We also have a pullback map j∗0 : H∗
et(Z)→ H∗

et(Z0).

Lemma 14.8. The composite

(14.8.1) H∗
et(Z,Z∞)

p−−−−→ H∗
et(Z)

j∗0−−−−→ H∗
et(Z0)

is zero.



116 MARTIN C. OLSSON

Proof. The scheme Z−(D∪Z∞) is isomorphic to (X−D)×A1 and hence by
Künneth we have H∗

et(Z,Z∞) ' H∗
et(X −D)⊗H2

c (A1) ' H∗−2
et (X −D)(1). With

this identification the map p is given by the pushforward map

(14.8.2) j0∗ : H∗−2
et (X −D)(1)→ H∗

et(Z).

Thus we wish to show that the map

(14.8.3) j∗0j0∗ : H∗−2
et (X −D)(1)→ H∗

et(X −D)

is zero. This follows from the self–intersection formula [24, VII.4.1] which shows
that this map is given by cup-product by the first Chern class of the conormal
bundle of Z0 in Z which is trivial. �

Note also that the map

(14.8.4) H∗
et(Z

′
∞)→ H∗

et(Z
′
∞ ∩ Z ′′∞)

is surjective since both are generated over H∗
et(Y ) by the first Chern class of the

tautological line bundle. From the excision sequence we deduce that the map

(14.8.5) H∗
et(Z∞)→ H∗

et(Z
′
∞)⊕H∗

et(Z
′′
∞)

is injective so we obtain an exact sequence

(14.8.6) H∗
et(Z,Z∞)

p−−−−→ H∗
et(Z) −−−−→ H∗

et(Z
′
∞)⊕H∗

et(Z
′′
∞).

In either theory, the composite

(14.8.7) H∗(Y )
pr∗1−−−−→ H∗(Y × P1)

f̃∗−−−−→ H∗(Z)
j∗0−−−−→ H∗(Z0) = H∗(X)

is equal to f∗. Combining this with 14.8 and 14.8.6 it follows that it suffices to
show that for any element a ∈ H∗

cris(Y ) the images of the classes α(f̃ cr
∗ (a)) and

f̃ et
∗ (α(a)) in H∗

et(Z
′
∞) and in H∗

et(Z
′′
∞) are equal. In either theory the formation of

pushforwards commutes with pullbacks along smooth subvarieties transverse to the
boundary. In the case of a divisor transverse to the boundary, this follows from the
description of the pushforward as a boundary map 8.23 and its crystalline analog
(which we leave to the reader). The general case is deduced from this using the
trick following 8.54 in the proof of 8.21. This reduces the proof of 14.7 to the case
of Y ↪→ Z ′∞ (note that the case of Z ′′∞ is trivial since Y × P1 ∩ Z ′′∞ is empty).

The proof is now reduced to the case of the inclusion f : Y ↪→ PY (N ∗ ⊕ OY ).
For any class β ∈ H∗(Y ) we have f∗(β) = f∗(f∗p∗β) = f∗(1) ∪ p∗β, and hence it
suffices to consider the case of constant coefficients and f∗(1). But in this case it
is well–known that f∗(1) in either theory is given by cr(N ∗) (this can for instance
be verified in the rational Chow ring where it is standard). By 14.5 this completes
the proof of 14.7 �

Corollary 14.9. Let trcr : H2d(((X,MX)/V )conv,M ⊗ JD) ⊗K B̃cris(V ) →
B̃cris(V ) denote the crystalline trace map and tret : H2d

c (Xo
K
,Qp) ⊗Qp B̃cris(V ) →

B̃cris(V )(d) the étale trace map. Then the diagram

(14.9.1)

H2d(((X,MX)/V )conv,M ⊗ JD)⊗K B̃cris(V ) trcr−−−−→ B̃cris(V )

α

y β⊗d

x
H2d

c (Xo
K
,Qp)⊗Qp

B̃cris(V ) tret−−−−→ B̃cris(V )(d)
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commutes. In particular, the map

α : H2d(((X,MX)/V )conv,M ⊗ JD)⊗K B̃cris(V )→ H2d
c (Xo

K
,Qp)⊗Qp B̃cris(V )

is an isomorphism.

Proof. It suffices to show this after making an extension of V when Xo →
Spec(V ) has a section. In this case the corollary follows from observing that the
trace map is characterized by the fact that it sends the class of a point in Xo to
1. �

14.10. It follows that there exists a unique map

αt : H∗
E,F (Xo

K
, L)⊗Qp

B̃cris(V )→ H∗(((X,MX)/V )conv,M ⊗ JE)⊗K B̃cris(V )

such that for any element

a ∈ H2d−∗(((X,MX)/V )conv,M ⊗ JF )

we have

(14.10.1) trcr(αt(b) ∪ a) = β⊗d(tret(b ∪ α(a))).

Using the same argument used in 8.60 and 8.61 one shows that αt is also an isometry.
It follows that α and αt are both isomorphisms. This completes the proof that
13.17.1 is an isomorphism.

14.11. Finally let us verify that the isomorphism α is strictly compatible with
the filtrations. For this it suffices to show that the morphism on the associated
graded is an inclusion, for then the inverse for α also preserves the filtrations.

Let D = E ∪ F be a decomposition of the boundary, and let F • denote the
filtration on H∗(X/K,M ⊗ JE) induced by the filtration on M and let F̂ • denote
the filtration on H∗(X/K,M∗ ⊗ JF ) induced by the dual filtration on M∗. It then
suffices to show that the induced pairing

(14.11.1) grs
FH

k(X/K,M ⊗ JE)⊗ gr−sbF H2d−k(X/K,M∗ ⊗ JF )→ Hd(X,Ωd
X)

is a perfect pairing for all k and s. To see that this suffices let G denote the filtration
on H∗

E,F (Xo
K
, L)⊗Qp

B̃cris(V ) induced by the filtration on B̃cris(V ), and to ease the
notation write

grs,k
F := grs

FH
k(X/K,M ⊗ JE)⊗K B̃cris(V ),

gr−s,2d−kbF := gr−sbF H2d−k(X/K,M∗ ⊗ JF )⊗K B̃cris(V ),

and
grs,k

G := grs
GH

k
E,F (Xo

K
, L)⊗Qp

B̃cris(V ).
We then have a commutative diagram

(14.11.2) grs,k
F × gr−s,2d−kbF //

α×α

��

B̃cris(V )

grs,k
G × gr−s,2d−k

G
// B̃cris(V )

and since both the top and bottom lines are perfect pairings it follows that the map

(14.11.3) grs
FH

k(X/K,M ⊗ JE)⊗K B̃cris(V )→ grs
GH

k
E,F (Xo

K
, L)⊗Qp B̃cris(V )

is an inclusion.
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The following therefore completes the proof of 13.21.

Lemma 14.12. The pairing 14.11.1 is perfect.

Proof. For every integer i there is a natural inclusion
(14.12.1)
F̂−i ⊂ {c ∈ H2d−k(X/K,M∗ ⊗ JF )|c ∪ β = 0 for all β ∈ F iHk(X/K,M ⊗ JE)}.

To prove the lemma it suffices to show that these inclusions are isomorphisms. Let
F i ⊗ JE denote the complex

(14.12.2) FiliM ⊗ JE → Fili−1
M ⊗ JE ⊗ Ω1

(XK ,MXK
)/K → · · · ,

and let DR(M⊗ JE)/F i denote the quotient of the de Rham complex of (M,∇)
tensored with the ideal JE by the subcomplex Fi ⊗ JE . The subspace F i of
Hk(X/K,M ⊗ JE) is defined to be the image of the natural map

(14.12.3) Hk(XK ,F i ⊗ JE)→ Hk(XK , DR(M⊗ JE)),

and F̂−i ⊂ H2d−k(XK , DR(M∗ ⊗ JF )) is the image of the natural map

(14.12.4) H2d−k(XK , F̂−i ⊗ JF )→ H2d−k(XK , DR(M∗ ⊗ JF )),

One shows as in 13.7 that the natural pairing
(14.12.5)
Hk(XK ,Fs ⊗ JE)×H2d−k(XK , DR(M∗ ⊗ JF )/F̂−s ⊗ JF )→ Hd(XK ,Ωd

XK
)

is a perfect pairing, and from this it follows that the image of 14.12.4 is via Poincaré
duality identified with the elements annihilating the image of 14.12.3. �

15. From B̃cris(V ) to Bcris(V )

In this section we explain how to lift the isomorphism 13.17.1 to an isomorphism
over Bcris(V ). This will be done using some general observations about the rings
BdR, B̃cris(V ), and Bcris(V ). Let us start by recalling the definitions of these rings.

15.1. Let V be a complete discrete valuation ring of mixed characteristic (0, p),
field of fractions K, and perfect residue field k. Let W be the ring of Witt vectors
of k, and let K0 ⊂ K be the field of fractions of W . Let K ↪→ K be an algebraic
closure, and let SV (resp. Acris(V ), Bcris(V ), B̃cris(V )) be the rings defined in 11.1.
As in 11.1.2 there is a surjection

(15.1.1) θ : W (SV )→ V
∧
,

where V
∧

denotes the p-adic completion of V . If J denotes the kernel of θ then
Acris(V ) is defined to be the p-adic completion of the divided power envelope
DJ(W (SV )).

Let t ∈ Acris(V ) be the element 11.1.5 so that Bcris(V ) is equal to the local-
ization Acris(V )[1/t]. Also for α ∈ Λ+ := Z[1/p] ∩ Q>0 define δα ∈ Acris(V ) as in
11.12 so that B̃cris(V ) = Bcris(V )[1/δα]α∈Λ+ . Note that by construction δpn

1/pn = δ1

so we also have B̃cris(V ) = Bcris(V )[1/δ1].
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15.2. Let us also recall the rings B+
dR and its field of fractions BdR. Let

(Bn, Jn, [ ]) be the divided power ring which is the reduction of Acris(V ) mod-
ulo pn (for a cohomological interpretation of this ring see [49, A1.6 and paragraph
following A2.10]). Then we set

(15.2.1) B+
dR := lim←−

r

(Q⊗ lim←−
n

Bn/J
[r]
n ).

There is a natural map Acris(V ) ⊗ Q → B+
dR, and one can show (see for example

[16, 1.5.2]) that B+
dR is a complete discrete valuation ring and that the image of

t ∈ Acris(V ) in B+
dR is a uniformizer. The field BdR is defined to be the field of

fractions of B+
dR. There is a natural inclusion Bcris(V ) ↪→ BdR, which induces an

inclusion B̃cris(V ) ↪→ BdR. Note that the action of GK on Acris(V ) induces an
action of GK on B+

dR and BdR and the inclusion B̃cris(V ) ↪→ BdR is compatible
with the GK-actions.

Lemma 15.3. (i) The natural map

(15.3.1) K0 ' Bcris(V )GK → B̃cris(V )GK

is an isomorphism, where the first isomorphism is by [17, 5.1.2].
(ii) For any GK-representation W the natural map

(15.3.2) K ⊗K0 B̃cris(V )⊗Qp
W → BdR ⊗Qp

W

is injective.

Proof. By [16, 1.5.7] we have K ' BGK

dR , so B̃cris(V )GK is a subring of K
containing K0. Also by [16, 4.2.4] the natural map

(15.3.3) K ⊗K0 Bcris(V )→ BdR

is injective. Since localization is an exact functor this implies that the natural map

(15.3.4) K ⊗K0 B̃cris(V )→ BdR

is also injective, which implies that the map

(15.3.5) K ⊗K0 B̃cris(V )GK → BGK

dR = K

is an inclusion. This is only possible if B̃cris(V )GK = K0 and we obtain (i).
For (ii) note that it suffices to consider W = Qp, in which case we already

remarked the result (namely that 15.3.4 is injective). �

15.4. For any finite dimensional continuous GK-representation W set

(15.4.1) Dgcris(W ) := (W ⊗Qp B̃cris(V ))GK ,

(15.4.2) Dcris(W ) := (W ⊗Qp
Bcris(V ))GK ,

(15.4.3) DdR(W ) := (W ⊗Qp BdR)GK .

There are natural inclusions

(15.4.4) Dcris(W ) ⊂ Dgcris(W ) ⊂ DdR(W ).

Since DdR(W ) is a finite dimensional K-vector space of dimension ≤ dimQpW [17,
1.4.2 Proposition] and the natural map

(15.4.5) K ⊗K0 Dgcris(W )→ DdR(W )
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is injective (this follows from 15.3 (ii) by taking GK-invariants), theK0-vector space
Dgcris(W ) has dimension ≤ dimQp(W ). Moreover if

(15.4.6) dimK0Dgcris(W ) = dimQpW

then the map 15.4.5 is an isomorphism.
There is also a commutative diagram

(15.4.7) Dgcris(W )⊗K0 B̃cris(V )
a //

��

DdR(W )⊗K BdR

b

��
W ⊗Qp

B̃cris(V ) // W ⊗Qp
BdR.

The map a is an inclusion as it is equal to the composite of the inclusion

(15.4.8) Dgcris(W )⊗K0 B̃cris(V ) ↪→ Dgcris(W )⊗K0 BdR = (Dgcris(W )⊗K0K)⊗K BdR

and the inclusion

(15.4.9) (Dgcris(W )⊗K0 K)⊗K BdR ↪→ DdR(W )⊗K BdR

obtained from 15.4.5. The map b is an injection by [17, 3.6 Proposition]. It follows
that the natural map

(15.4.10) Dgcris(W )⊗K0 B̃cris(V )→W ⊗Qp
B̃cris(V )

is also an injection. We say that W is B̃cris(V )-admissible if this map 15.4.10 is an
isomorphism.

Similarly one obtains a notion of Bcris(V )-admissible (resp. BdR-admissible)
representations. Following standard terminology we call a Bcris(V )-admissible (resp.
BdR-admissible) representation a crystalline (resp. de Rham) representation. Note
that we have the following implications:

(15.4.11) crystalline =⇒ B̃cris(V )-admissible =⇒ de Rham.

The main result of this section is the following:

Theorem 15.5. Any B̃cris(V )-admissible representation is crystalline.

Proof. Let W be a B̃cris(V )-admissible representation and let M0 denote
Dgcris(W ) so we have a GK-equivariant isomorphism

(15.5.1) W ⊗Qp
B̃cris(V ) 'M0 ⊗K0 B̃cris(V ).

Note that then the natural map

(15.5.2) M0 →W ⊗Qp
B̃cris(V ) ↪→W ⊗Qp

BdR

induces an isomorphism

(15.5.3) M := M0 ⊗K0 K → (W ⊗Qp
BdR)GK .

Let π ∈ V be a uniformizer and fix a sequence of elements s = {sn}n≥0 of V
such that s0 = π, sp

n+1 = sn. Denote by ε(s) ∈ W (SV ) the Teichmuller lifting
of the element of SV defined by the reductions of the sn. Then one can show
(see for example [30, 2.2]) that the series log(ε(s)π−1) converges to an element
us ∈ B+

dR. Let Bst ⊂ BdR denote the subalgebra over Bcris(V ) generated by us.
Then as explained in [16, 3.1.5] the element us is transcendental over Bcris(V ) so
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Bst is isomorphic to a polynomial algebra over Bcris(V ). Also the GK-action on
BdR restricts to a GK-action on Bst.

Lemma 15.6. We have

(15.6.1) Bcris(V ) = B̃cris(V ) ∩ Bst ⊂ BdR.

Proof. Since localization is an exact functor, the subalgebra of BdR generated
by B̃cris(V ) and us is isomorphic to a polynomial algebra B̃cris(V )[u] such that a
polynomial

∑
i aiu

i is in Bst = Bcris(V )[u] if and only if all the coefficients ai are
in Bcris(V ). This implies the lemma. �

From this we deduce 15.5 as follows. By [3, 0.7] any de Rham representation is
potentially semistable which implies that there exists a finite extension K ⊂ K ′ ⊂
K such that

(15.6.2) K ′ ⊗K′
0
(W ⊗Qp Bst)GK′ → (W ⊗Qp BdR)GK′

is an isomorphism, where K ′
0 denotes the field of fractions of the ring of Witt

vectors of the residue field of K ′. Let B̃st denote Bst⊗Bcris(V ) B̃cris(V ). By a similar

reasoning as in 15.3 we have B̃
GK′

st = K ′
0. It follows that we have a diagram of

injections of K ′
0-vector spaces of dimension equal to dimQp

W

(15.6.3) (W ⊗Qp
Bst)GK′ � � // (W ⊗Qp

B̃st)GK′

(W ⊗Qp
B̃cris(V ))GK′

?�

OO

It follows that all these maps are isomorphisms. Therefore the image of the map

(15.6.4) M0 →W ⊗Qp
B̃st

is contained in

(15.6.5) (W ⊗Qp
B̃cris(V )) ∩ (W ⊗Qp

Bst)

which by 15.6 is equal to W ⊗Qp
Bcris(V ). Therefore M0 ⊂ Dcris(W ) which implies

that

(15.6.6) dimK0Dcris(W ) = dimQp
W.

Therefore W is crystalline [17, 1.4.2 Proposition]. �

Remark 15.7. It should be remarked that Berger’s theorem that de Rham
representations are potentially semistable was not available at the time of Tsuji’s
original proof of the comparison theorem.

15.8. Note that if W is a crystalline representation, then the natural map
Dcris(W )→ Dgcris(W ) is an isomorphism and the isomorphism

(15.8.1) Dgcris(W )⊗K0 B̃cris(V ) 'W ⊗Qp B̃cris(V )

is induced by the isomorphism

(15.8.2) Dgcris(W )⊗K0 Bcris(V ) = Dcris(W )⊗K0 Bcris(V ) 'W ⊗Qp
Bcris(V ).
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Corollary 15.9. The map α in 13.17.1 induces an isomorphism

(15.9.1) Bcris(V )⊗KH
∗(((Y,MY )/V )conv, F⊗JE)→ Bcris(V )⊗Qp

H∗
E,F (XJ,et, L)

compatible with Galois actions, Frobenius, and filtrations.

Appendix A. Künneth formula in group cohomology

The results of this appendix are standard, but we were unable to locate a
suitable reference so we include them here.

A.1. Let R be a ring and let G and H be profinite groups. For a continuous
representation M (resp. N) of G (resp. H) over R, let M �N be the continuous
representation of G×H over R with underlying R-module M ⊗R N and action of
(g, h) ∈ G×H given by

m⊗ n 7→ (g ·m)⊗ (h · n).

A.2. Let ∆ denote the standard simplicial category with objects the finite
ordered sets [n] = {0, . . . , n} and morphisms the order preserving maps. Let G[n]

denote the set of functions [n]→ G[n], and let

Homcts
G (G[n],M)

denote the set of continuous functions ϕ : G[n] → M (where M has the discrete
topology) such that for every g ∈ G and (g0, . . . , gn) ∈ G[n] we have

ϕ(gg0, . . . , ggn) = g · ϕ(g0, . . . , gn).

For any morphism δ : [m]→ [n] in ∆ there is an induced morphism

Homcts
G (G[m],M)→ Homcts

G (G[n],M)

sending ϕ : G[m] →M to the function G[n] →M sending

(g0, . . . , gn) 7→ ϕ(gδ(0), . . . , gδ(m)).

In this way we get a cosimplicial R-module

AG := Homcts
G (G[−],M),

and as is well-known the corresponding total complex ÃG computes RΓ(G,M) (see
for example [44, I §2.2]).

Similarly, RΓ(H,N) and RΓ(G×H,M �N) are computed by the total com-
plexes ÃH and ÃG×H respectively of the cosimplicial R-modules

AH := Homcts
H (H [−], N) and AG×H := Homcts

G×H((G×H)[−],M �N).

A.3. Now in general (see for example [28, §I.1.2]) if A and B are cosimplicial
R-modules, then we obtain a co-bisimplicial R-module A ⊗ B (i.e. functor ∆2 →
ModR) by the formula

([n], [m]) 7→ An ⊗R Bm,

whose associated total complex Ã⊗B is equal to Ã⊗R B̃.
Let A⊗∆B denote the restriction of A⊗B to the diagonal ∆ ⊂ ∆2, so A⊗∆B

is the cosimplicial R-module
[n] 7→ An ⊗Bn.

By the Eilenberg-Zilber theorem [28, I.1.2.2] there is a natural quasi-isomorphism

Ã⊗B → Ã⊗∆ B.
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A.4. For any [n] ∈ ∆ there is a natural map

(A.4.1) Homcts
G (G[n],M)⊗R Homcts

H (H [n], N)→ Homcts
G×H((G×H)[n],M �N),

sending

ϕ⊗ ψ 7→ ((g0, h0), . . . , (gn, hn)) 7→ ϕ(g0, . . . , gn)⊗ ψ(h0, . . . , hn).

A straightforward verification shows that this is compatible with the cosimplicial
structures and therefore defines a morphism of cosimplicial R-modules

AG ⊗∆ AH → AG×H .

This then defines a morphism

(A.4.2) ÃG ⊗ ÃH ' ˜(AG ⊗AH)→ ˜(AG ⊗∆ AH)→ ÃG×H .

A.5. Now assume that both M and N are flat R-modules and that RΓ(G,M)
and RΓ(H,N) lie in Db(R) (the bounded derived category of complexes of R-
modules). Then ÃG and ÃH are also complexes of flat R-modules, so the map
A.4.2 defines a morphism in D(R)

(A.5.1) RΓ(G,M)⊗L RΓ(H,N)→ RΓ(G×H,M �N).

Theorem A.6 (Künneth formula). The map A.5.1 is an isomorphism.

Proof. It suffices to show that for any [n] ∈ ∆, the map A.4.1 is an isomor-
phism.

For this note that the inclusion Gn ↪→ G[n] sending

(g1, . . . , gn) 7→ (1, g1, . . . , gn) ∈ G[n]

defines an isomorphism

Homcts
G (G[n],M) ' Homcts(Gn,M),

and similarly for H and G×H. It therefore suffices to show that the natural map

(A.6.1) Homcts(Gn,M)⊗R Homcts(Hn, N)→ Homcts((G×H)n,M �N)

is an isomorphism. Since M (resp. N) is a continuous representation of G (resp.
H) we have

M = ∪UM
U , (resp. N = ∪V N

V ),

where U (resp. V ) runs over open normal subgroups of G (resp. H). Since the
formation of tensor product commutes with direct limits, it follows that we also
have

M �N = lim−→
(U,V )

MU �NV .

We therefore have

Homcts(Gn,M)⊗Homcts(Hn, N) = lim−→
U,V

Homcts(Gn,MU )⊗Homcts(Hn, NV ),

and
Homcts((G×H)n,M �N) = lim−→

U,V

Homcts((G×H)n,MU �NV ).

It therefore suffices to prove that the map A.6.1 is an isomorphism in the case when
M = MU and N = NV for some open normal subgroups U ⊂ G and V ⊂ H.
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In this case, let (Ui)i∈I (resp. (Vj)j∈J) be the set of open normal subgroups in
G (resp. H) contained in U (resp. V ). We then have

Homcts(Gn,M) = lim−→
i

Hom((G/Ui)n,M),

Homcts(Hn, N) = lim−→
j

Hom((H/Vj)n, N),

and

Homcts((G×H)n,M �N) = lim−→
i,j

Homcts((G/Ui ×H/Vj)n,M �N).

This reduces the proof to showing that the maps

Hom((G/Ui)n,M)⊗Hom((H/Vj)n, N)→ Homcts((G/Ui ×H/Vj)n,M �N)

are isomorphisms, which is immediate. �

Corollary A.7. Suppose in addition to the hypotheses of A.5 that the groups
Hi(G,M) and Hi(H,N) are projective R-modules for all i. Then the natural map
of graded R-modules

H∗(G,M)⊗R H∗(H,N)→ H∗(G×H,M �N)

is an isomorphism.

Proof. Since RΓ(G,M) and RΓ(H,N) are bounded complexes of R-modules
with cohomology groups projective R-modules, we have isomorphisms in D(R)

RΓ(G,M) ' H∗(G,M), RΓ(H,N) ' H∗(H,N),

where H∗(G,M) and H∗(H,N) are viewed as complexes with zero differentials.
From A.6 we conclude that

RΓ(G×H,M �N) ' H∗(G,M)⊗R H∗(H,N),

and in particular for every i the R-module Hi(G × H,M � N) is a projective
R-module. Therefore we also have

RΓ(G×H,M �N) ' H∗(G×H,M �N)

which implies the corollary. �
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219–284.

[4] P. Berthelot and A. Ogus, Notes on crystalline cohomology, Princeton U. Press, Princeton,
1978.

[5] C. Breuil, Integral p-adic Hodge theory, Adv. Stud. Pure Math., 36 (2002), 51–80.

[6] ,Sur quelques représentations modulaires et p-adiques de GL2(Qp). I, Compositio
Math. 138 (2003), 165–188.

[7] , Sur quelques représentations modulaires et p-adiques de GL2(Qp). II, J. Inst. Math.
Jussieu 2 (2003), 23–58.

[8] C. Breuil and W. Messing, Torsion étale and crystalline cohomologies, Astérisque 279 (2002),
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[23] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.

[24] A. Grothendieck, Cohomologie l-adic et Fonctions L, Lectures Notes in Math 589 (1977).
[25] , Revêtements étales et groupe fondamental, Lectures Notes in Math 224 (1971).

[26] O. Hyodo and K. Kato, Semi-stable reduction and crystalline cohomology with logarithmic
poles, Asterisque 223 (1994), 221–268.

[27] L. Illusie, Crystalline cohomology, Proc. Sympos. Pure Math 55 (1994), 43–70.
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